

Elektrotechnische Grundlagen der Informatik (LU 182.085)

Protokoll der 1. Laborübung: "Grundlagen der Messtechnik"

Gruppennr.: 5 Datum der Laborübung:

Matr. Nr.	Kennzahl	Name	
0300847	033 535	Krumböck Alexander	
0828055	033 535	Gschweicher Reinhold	
0728100	033 535	Markus Müllner	

Kontrolle	√
stromrichtige Messschaltung	
spannungsrichtige Schaltung	
Spannungs- Stromteilerschaltung	
Superpositionsprinzip	
Arbitrary Waveforms	
Diodenkennlinie	

Inhaltsverzeichnis

1	Digi	talmultimeter 3
	1.1	Belastungsfehler
	1.2	Spannungsteiler- und Stromteilerregel
	1.3	Superpositionsprinzip
2	Oszi	lloskop, Funktionsgenerator 5
	2.1	Erste Schritte
	2.2	Arbitrary Waveforms
	2.3	X-Y-Betrieb
	2.4	Dioden-Kennlinie
Λ	L L !!	d
A	ıldd	dungsverzeichnis
	1	Sinus - Messung mit Cursor
	2	Sinus - Quick-Measurement
	3	Sinus - mit 50 Ohm Widerstand
	4	arbitrary waveform
	5	XY-Betrieb
	6	Messung - Diode Grün
	7	Messung - Diode Rot
T	abe	llenverzeichnis
	1	Stromrichtige Messung
	2	Spannungsrichtige Messung
	3	berechnet: Spannungsteiler- und Stromteiler
	4	gemessen: Spannungsteiler- und Stromteiler
	5	Superpositions-Messungen
	9	- Superpositions incodungen

1 Digitalmultimeter

1.1 Belastungsfehler

Widerstand	Spannung	Strom	Berechneter Widerstand
Ω	V	mA	Ω
10.1	1	88.0	11.36
9.90 k	10	0.980 m	10.20 k
0.987 M	10	0.010 m	1 M

Tabelle 1: Stromrichtige Messung

Widerstand	Spannung	Strom	Berechneter Widerstand
Ω	V	mA	Ω
10.1	1	100.8 m	9.92
9.90 k	10	0.992 m	10.08 k
0.987 M	10	0.0111 m	0.9009 M

Tabelle 2: Spannungsrichtige Messung

Beim Umstellen des Amperemeters zwischen den einzlnen Stufen kommt es zu Spannungsschwankungen wegen der unterschiedlichen Innenwiderstände. Wenn wir zum Beispiel bei der spannungsrichtigen Messung das Amperemeter feiner eingestellt haben, bekamen wir beim Voltmeter eine höhere Spannung. Wenn wir beim Voltmeter den Messbereich vergrösserten kam es beim Stromflusses des Amperemeters zu höheren Werten.

1.2 Spannungsteiler- und Stromteilerregel

Wir haben Variante B gewählt da bei den anderen 2 Varianten zu viel bzw zu wenig Strom gewesen wäre.

	Gemssene Werte	Spannung	Strom
Nr.	Ω	V	Α
1	21.79 k	5.302	0.243 m
2	32.92 k	5.302 4.698	0.142 m
3	46.73 k	4.698	0.101 m
		1	ı

Tabelle 3: berechnet: Spannungsteiler- und Stromteiler

	Gemssene Werte	Spannung	Strom
Nr.	Ω	V	A
1	21.79 k	5.297	0.238 m
2	32.92 k	4.695	0.140 m
3	46.73 k	4.695	0.0988 m
		ı	ı

Tabelle 4: gemessen: Spannungsteiler- und Stromteiler

Verwendete Formeln für die Berechnung:

$$U = R * I$$

$$R_{Ersatz} = \frac{R_2 * R_3}{R_2 + R_3}$$

$$\frac{U_q}{R_g} = \frac{U_1}{R_1}$$

Die leichten Abweichungen der gemessenen Werte mit den errechneten sind mit der analogen Spannungsquelle, der nicht idealen Leiter und der Messungenaugkeit zu begründen.

1.3 Superpositionsprinzip

	U_x	$ I_x$
U_1 aktiv	0.334	0.317
U_2 aktiv	2.556	2.08
beide aktiv	2.890	2.36
$U_1 + U_2$	2.890	2.397

Tabelle 5: Superpositions-Messungen

Die Spannung bzw Strom Addiert ergeben die Werte (bis auf eine kleine Messungenauigkeit) das gleiche wie wenn beide Quellen aktiv sind.

2 Oszilloskop, Funktionsgenerator

2.1 Erste Schritte

Signale

A) Sinus

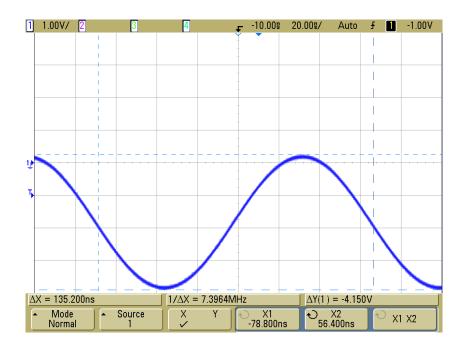


Abbildung 1: Sinus - Messung mit Cursor

Quick-Measurement

Ausgangsimpendanz auf 50 Ω gestellt. Am Oszi aendert sich nichts, doch Amplitude und Offset beim Frequenzgenerator werden halbiert.

Widerstand gegen einen 50 Ω Widerstand getauscht, somit stimmen die gemessenen werte.

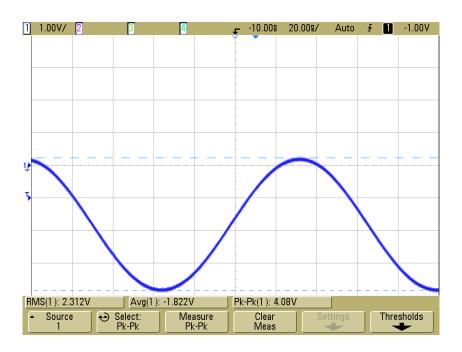


Abbildung 2: Sinus - Quick-Measurement

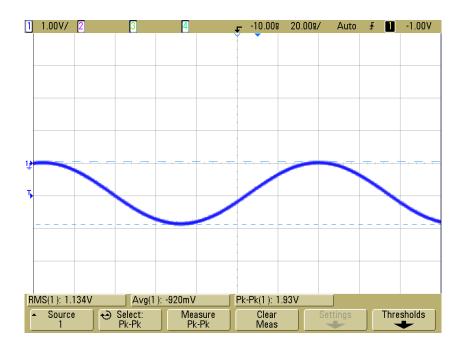


Abbildung 3: Sinus - mit 50 Ohm Widerstand

2.2 Arbitrary Waveforms

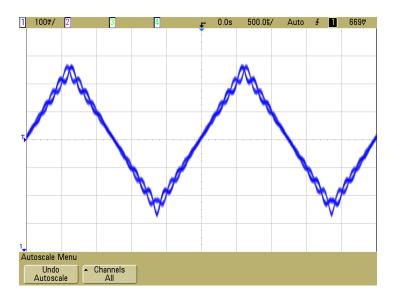


Abbildung 4: arbitrary waveform

2.3 X-Y-Betrieb

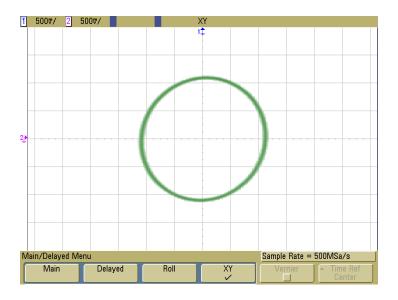


Abbildung 5: XY-Betrieb

Frequenz auf 333 Hz eingestellt. Wenn man die Frequenz erhöht wird der Kreis höher, reduziert man die Frequenz wird der Kreis breiter.

2.4 Dioden-Kennlinie

Unsere Gruppe war zu langsam. Also haben wir diese Aufgabe außerhalb der betreuten Zeiten gemacht. Deswegen hatten wir keinen Tutor, welcher uns das zu benutzende LED vorgegeben hätte. darum haben wir mehrere ausprobiert.

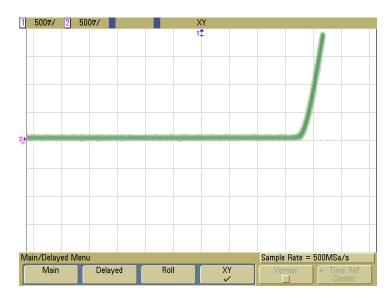


Abbildung 6: Messung - Diode Grün

Diode Grün leitet bei ungefähr 1.7 V.

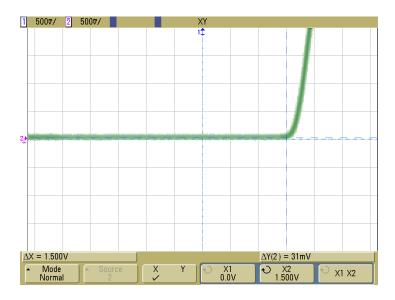


Abbildung 7: Messung - Diode Rot

Diode Rot leitet bei ungefähr 1.5 V.