gnuplot 4.5

An Interactive Plotting Program

Thomas Williams & Colin Kelley
Version 4.5 organized by: Hans-Bernhard Broker, Ethan A Merritt, and others

Major contributors (alphabetic order):
Hans-Bernhard Broker
John Campbell
Robert Cunningham
David Denholm
Gershon Elber
Roger Fearick
Carsten Grammes
Lucas Hart
Lars Hecking
Thomas Koenig
David Kotz
Ed Kubaitis
Russell Lang
Timothée Lecomte
Alexander Lehmann
Alexander Mai
Ethan A Merritt
Petr Mikulik
Carsten Steger
Tom Tkacik
Jos Van der Woude
Alex Woo
James R. Van Zandt
Johannes Zellner
Copyright (©) 1986 - 1993, 1998, 2004 Thomas Williams, Colin Kelley
Copyright (©) 2004 - 2011 various authors

Mailing list for comments: gnuplot-info@lists.sourceforge.net
Mailing list for bug reports: gnuplot-bugs@lists.sourceforge.net
Web access (preferred): http://sourceforge.net/projects/gnuplot
This manual was originally prepared by Dick Crawford.

2011 Version 4.5(cvs)

2 |gnuplot 4.5 | CONTENTS
Contents
16
1 _Copyright| 16
2 Introduction| 16
|3 Seeking-assistance| 18
I N ? . i I3 :) 18
Ml Canvas SIZe] e e e e 18
4.2 New plot elements| e 19
4.3 New or revised terminal driversl. 19
4.4 New smoothing algorithms| L 19
5 ackwards compatibility 19
[Back d ibility|
[6 Batch/Interactive Operation| 20
|7 Command-line-editing]| 20
8 Comments 21
9_Coordinates| 21
(10 Datastrings| 22
(11 Enhanced text mode| 22
12 Environment 23
|13 Expressions| 24
MBI TFunctons o o o e 24
(13.1.1 Elliptic integrals| o 26
[13.1.2 Random number generator] oo 26
MBI3Valuel ottt e 27
13.2 Operators]. e 27
13.2.1 Unary|] e 27
13.2.2 Binary|l. e 27
[[3.2.3 Ternary] 28
113.3 Gnuplot-defined variables| 29
[13.4 User-defined variables and functionsl, 29
14 Fonts| 30
|14.1 Cairo (pdfcairo, pngcairo, wxt terminals)| L. 30
[14.2 Gd (png, gif, jpeg terminals)| 30

CONTENTS |gnuplot 4.5 | 3
|14.3 Postscript (also encapsulated postscript *.eps)| oL 31

15 Glossary| 31
[L6 Linetypes, colors, and styles| 32
0. olorspec] . . . L L L e e 33
[16.1.1 Tanecolor variablel 33

[16.1.2 Rgbcolor variablel. o 33

[116.2 Linestyles vs linetypes| e 34
(L7 Mouse input| 34
D 3 34
[17.1.1 Bind space] e 35

[72 Mouse variabled 36

3 g 36

19 Start-up 37
|20 String constants and string variables| 37
BT Substitut [C % | 37
[21.1 Substitution of system commands in backquotes| oo 38
[21.2 Substitution of string variables as macros| Lo 38
[21.3 String variables, macros, and command line substitution| 39

22 Syntax 39
22.1 Quote Marks| 40
[23 Time/Date datal 40
(II Plotting styles| 41
(24 Boxerrorbars| 41
25 Boxes| 42
Boxp 43

|27 Boxxyerrorbars| 43
(28 Candlesticksl| 44
29 Circles| 45
45
31 Dotsl 46

4 [gnuplot 4.5 | CONTENTS
32 Filledcurves| 46
33 Financebars| 47
34 Fsteps 48
35 Histeps| 48
|36 Histograms| 48

136.1 Newhistogram| e 51

[36.2 Automated iteration over multiple columns|o 00000000 51
51

B7.1 Transparency|. e e e 52

B7.2 Tmage failsate|. 53
38 Impulses 53
39 Labels| 53
[40 Lines| 54
[41 Linespoints| 54
42 Points| 54
43 Polar] 54
55
55
55
[4T7 Vectors| 55
48 Xerrorbars| 56
|49 Xyerrorbars| 56
60 Yerrorbars] 56
61 Xerrorlines| 57
[62 Xyerrorlines| 57
63 Yerrorlines| 58
[54 3D (surface) plots] 58

CONTENTS |gnuplot 4.5 | 5
U1l Commands| 59
65 Cdl 59
(56 Call 59
67 Clear] 60
68 Evaluatel 60
69 Exit] 61
[60_Fit] 61
60.1 Adjustable parameters|. 62
[60.2 Short introductionl 63
60.3 Error estimatesl. e e e e 64
[60.3.1 Statistical overview] L L 64

[60.3.2 Practical guidelines| oo 65

BOZ Contrall o o 65
60.4.1 Control variablesl 65

60.4.2 FEnvironment variablesl oo 66

60.5 Multi-branch| 66
60.6 Starting values| L e 67
60.7 Tips| e e 67
61 Help| 68
62 Histor; 68
63 If 68
[64 Tteration 69
[65 Load| 69
[66 Lowerl 70
70
[68 Plotl 71
68.1 Axesl. e 71

68.2 Datal. e 71

68 BINATY[. . .« o o o o e e e e e e e e e e e e e e e e e e 73

[68.2.2 Binary generall Lo 73

68 A % 74

68.2.4 Recordl e 74

|gnuplot 4.5 | CONTENTS

68.2.6 Format] 74
BR2T Endiaml . - -« o oo o e e 75
[68.2.8 Filetype]o 75
68281 Avsl. . .o 75

68282 Bdfl 75

68.2.8 Pngl. . . . 75

[68.2.9 Keywords| 76
[68.2.9.1 DCAN| . . . e e 76

168.2.9.2 Transposel L 76

168.2.9.3 Dx,dy, dz[. 76
168.2.9.4 Flipx, flipy, flipz] 76
168.2.9.5 Origin | e e 76

168.2.9.6 Center] 76
68.29.7 Rotatel 76

168.2.9.8 Perpendicular|o oo 77

168.2.9.9 Binary examples|. oo o 77

68 VI - 77
[68.2.11 Example datafile] o 78
.. 78
B6R2T3 Smoothl - . . .« o o e 79
68.2.13.1 Acsplines|. 79
682132 Bezier] 80
68.2.13.3 Csplines| 80
68.2.13.4 Sbezier| 80
68.2.13.5 Unique| 80
68.2.13.6 Frequency| 80
682137 Cumulativel 80
68.2.13.8 Cnormall L 80
68.2.13.9 Kdensity] 80

[68.2.14 Special-filenames| e 80
68.2.15 Thrul. 82
63 Using| e 82
68.2.16.1 Using examples| oo o 83
68.2.16.2 Pseudocolumnsl oo 84
68.2.16.3 Xticlabelsl oo 84
68.2.16.4 X2ticlabelslo 84
68.2.16.5 Yticlabels 84
68.2.16.6 Y2ticlabelslo o 84
68.2.16.7 Zticlabeldo 84

B3 _EITOrDArS . « -« o v e e 84
68.4 FErrorlinesl e 85

CONTENTS |gnuplot 4.5 | 7

68.6 Ranges| 86
68.7 Iterationl e e e 87
68.8 Tatlel. e e 88
68.9 Withl e e 88
[69 Print] 90
70 Pwdl 91
71 Quit 91
[72 Raisel 91
[73 Refresh| 91
74 Replot 91
[75 Reread| 92
76 Resetl 93
77 Save 93
[78 Set-showl 93
8 Angles|. e 94
[78.2 AITOWl e e e 94
8.3 Autoscalel e 96
[78.3.1 Parametricmodel 97

(832 Polarmode 97

784 Barsl. e 98
8.5 Bindl. e e 98
... 98
BT Borderl oo 98
B8 BoxWIdthl . .« -+« o o o e e e e e 99
FRO CTabell. . . . o o oo o e e e e e 100
.. 100
[78.11 Cntrparam| e e e e e e e e 101
RIZCOlor Boxl . « . v o oo o o e e e 102
[£8.13 Colornamesl 103
[TRIZCoNtourl . - - - o v v v e 103
[78.15 Data style|. o . o e 104
BI6Datafild oo 104
[(8.16.1 Set datafile fortranl 104

[78.16.2 Set datafile notpe_trap| 104

[78.16.3 Set datafile missing] e 104

[78.16.4 Set datafile separator| e 105

|gnuplot 4.5 | CONTENTS

[(8.16.5 Set datafile commentscharsl o o000 106
[78.16.6 Set datafile binary| 106
[78.17 Decimalsign|. 107
.. 107
.. 109
... 109
TR21T FItl. . o e 110
... 110
.. 111
[78.23.1 Goprint] 111
[78.23.2 Format specifiers| 111
[78.23.3 Time/date specifiers| 112
[78.24 Function style] 113
... 113
7826 Gridl e 114
MR2THIAdenddl . - -« o oot o e e 114
[78.28 Historysize|« e 116
178.29 Isosamples| e 116
.. 117
[78.30.1 Key placement| e 119
[78.30.2 Key samples| 119
ME3TTabell oot 120
8 el 122

8 GIN|. . . L e e 123
8.34 dpathl o 123
MB35 TLocald oot 123
8.36 Logscale|. e 123
MITMACION . . . o o o oo e e e 124
8.38 Mapping] e 124
.. 124
78.40 Mouse| oL 125
[78.40.1 Scrolling|. e 126
((8.40.2 XTIl mousel e 126

41 M plot| . . . e 126
78.42 Mx2tics| o . e 128
MRAZNIXEICH o o oo 128
78.44 My2tics| e 128
8.45 Mytics| . . . o . e 128
78.46 Mzticsl. e 129
.. 129
[78.47.1 Rectangle| o 129

4 DSE| . . . e e e e e e e e e e e e e 130

CONTENTS |gnuplot 4.5 | 9

[(8.47.3 Circlel 130
[78.47.4 Polygon| e 130
78.48 Offsets] o e 131
... 131
8.50 Output]| 131
[[(85T Parametric o . 132
78.52 Plotl e 132
ME3PmMBAl .« o o ot e e 132
[78.53.1 Algorithm|. 133
[(853.2 Positionl . - . . . o« « o o 134
[r8.53.3 Scamorder| L 134
[78.53.4 Clipping]. L 135
[78.53.5 Color_assignment|. e 135
MRE3.6 HHAdensdl - -« - o v vt e e e 135
[78.53.7 Interpolatel L 136
[78.53.8 Deprecated_options|. 136

78.54 Pale

[78.66.1 Set style arrow| e 144
[78.66.2 Boxplot| e 145
[78.66.3 Set styledatal 146
[78.66.4 Set style filll 146

[78.66.4.1 Set style fill transparent| 146
[78.66.5 Set style function|. L 147

[78.66.6 Set style increment|. e 147

10 [gnuplot 4.5 | CONTENTS
[78.66.7 Set style line| L 147
[78.66.8 Set style circle] 149
[78.66.9 Set style rectangle]o 149
[78.66.10 Set style ellipse| 149

78.67 Surfacel e 150
BBSTABIEl oot o 150
78.69 Terminall 150
178.70 Termoption| L L 151
TRITTICS . . . o o e 151
MRTZTACSIEVE]l .« o o o v ot e e 152
78.73 Ticscalel e 152
17874 Timestamp| L 152
78.75 Timefmtl L 152
MT6TIEIE . . . o oot e 153
8 SIN| .. e e 154
8.78 Cel L e 154
8.79 Urange] e 154
MRROVarfables . . .« o oot o 154
.. 154
MRB2IVIEW . . o o o oo 154
[78.82.1 Equalaxes| 155
8.83Vrange] e 155
.. 155
MRSEX2ATICH - . .« o o o o o e 155
.. 155
MRETX2MIICH . - - o o o oo 155
8.88 X BE| . e 156
7889 X2ical e 156
[(8.90 X2zeroaxisl L 156
MROTXdatal . . . o o oo o e 156
78.92 Xdtics| e 156
MRIZXKIAbell. . . o o o o o o 156
78.94 Xmticsl o e 157
3.95 X ZO L e e 158
78.96 Xticsl e 159
[(8.96.1 Xtics timedatal. L L 161
[78.96.2 Xtics rangelimited|o Lo 162

8.97 Xyplane|. L e 162
... 162
MRITY2datal . . . o o o oo e 162
T8IOOY2dtIcs] e 162

CONTENTS |gnuplot 4.5 | 11

TRION2mtics o o e 163
.. 163
T T T 163
[(8.105Y2zeroaxisl e 163
78.106Ydatal e e 163
MRIOTAEICH . - - o o o o o e e 163
810 Tabell o 163
.. 163

8. 1I0Yrange|l e 163
163

164

164

164

164

78.116Cbdatal 164
(8 I1Chdtics o e e 164
TRIISeral o e 164
MRITHeroaxisl. - - - - o o o oo e e 164
8 120Mabell oL e 165
TRI2TZmticsl. e 165
8.12%range|l e e 165
.. 165
165

M8IZACBIEICH . .« o o o o e e 165
8.12(Cbrange|. 165

78 12TCDhtIcs o o e 166
79 Shell 166
80 Splot 166
80.1 Data-filel 167
[80.1.1 Binary matrix| 167

[80.1.2 Example datafile]o 168

BO.1.3 Matrix asciil o v e e 168

80.1.4 Matrixl. 169

80.2 Griddatal 169
80.3 Splot overview| e e e e 170
170
82 Testl 170

83 Undefine 171

12 |gnuplot 4.5 | CONTENTS

[84 Unsetl 171
171
(IV "~ Terminal types| 171
86 Complete list of terminals| 172
R6.1 AedT767] e 172
R6.2 Aifml e 172

86 Aqual e 172
R6.4 Bel e 173
[86.4.1 Command-line options|. L 173

[86.4.2 Monochrome_options|. 174

86,43 Colorresourcesl L 174

[86.4.4 Grayscale_resources|o 174

[B6.45 Tineresources 174

BEE Canvad o oo 175
86.6 Cgll o e 176
B6.7 Cam. . . . 176
[86.7.1 Cgm font| 177

[86.7.2 Cegm fontsize] e e e e 178

[86.7.3 Cegm linewidth| 178

[86.7.4 Cgm rotate] L e 178

[86.7.5 Cegmsolid| e 178

[86.7.6 Cgm Siz€] o e e e e e e 178

[86.7.7 Cegm width| 179

[86.7.8 Cgm nofonthist| 179

R86.8 Corell e 179
86.9 Debug]. e 179
86.10 Dospd 179

86 Dumbl . . . 179
BEI2DXHo 180

30 Dxy800a] . . . e e e e e e e 180
36.14 Eepic| 180
RIS Fmil o e 181
86.16 0a] . L e 181

86 p S 182
[86.18 Epson_I80dpy| 185
BEIOEXC . . . o ot o 185
86.20 Figl o e 185

86 P 186

CONTENTS |gnuplot 4.5 | 13

[86.22.1 Examples| 188
[86.23 Gnugraph(GNU plotutils)|. 188
86.24 GDIC|. 189
R6.25 Grassl e e 189
86.26 Hercules|. o 189
BOZTHDIOIZA - -« o o v o oo e e e e e 190
BOISTDIONS - . o o o o oo oo 190
86.29 Hph00c| o o 190
BOBUTDE]. - - o o o oo e e 190
86.31 Hpljiil o o e 191
BOBZTIDDI - - o o o oo e e 191
86 BN . . 191
86.34 Jpeg|. . . .o 191
86 Vol - o 192
86.36 Latex] 192
ROITLINUX] o o o e 193
86.38 Lual e 193

[B6.38.1 Tmatika o o 193
86.39 Macintoshl o 195
BEAODMD o oo 196

(86.40.1 METAFONT Instructions| o o 196
86.4T Mear] e 197
86.42 Mifl o e 197
BOATND - o o o o oo e e e e 198

[86.43.1 Metapost Instructions| Lo o 199
RO.A4 Nextl. o e 200
[86.45 Openstep (next)| L 200
BEAGDPDIN . . - o v o ot ot 201
R6.47 Pdil e 201
BEASPfcalrdl. o o ot 201
86.49 Pml| e 202
S86.50 Pngl e 203

[86.50.1 Examples| e 204
86.51 Pngcairo] 204
86.52 P P . . 205

[86.52.1 Editing postscript| e 207

[86.52.2 Postscript fontfile] 207

[86.52.3 Postscript prologue]. 208

[86.52.4 Postscript adobeglyphnames| oo, 208
86.53 Pslatex and pstex| e e 209
86.54 Pstricksl oL 210

14 |gnuplot 4.5 |

CONTENTS

86.08 Rgip|.
86.09 Sunl

[86.74.1 Graph-menu|l
[86.74.2 Printing| o

[86.74.4 Wegnuplot.mnu| oL
[86.74.5 Wegnuplot.anif oo
ROTH WX o
ROT6 XTT] . . . o o o o

[V Graphical User Interfaces|

Y B lo

|87 Gnuplot limitations|

226

227

227

CONTENTS |gnup10t 4.5 | 15

(88 Fxternal libraries| 227

VIT_Index 227

16 gnuplot 4.5 2 INTRODUCTION

Part 1
Gnuplot

1 Copyright
Copyright (C) 1986 - 1993, 1998, 2004, 2007 Thomas Williams, Colin Kelley

Permission to use, copy, and distribute this software and its documentation for any purpose with or
without fee is hereby granted, provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in supporting documentation.

Permission to modify the software is granted, but not the right to distribute the complete modified source
code. Modifications are to be distributed as patches to the released version. Permission to distribute
binaries produced by compiling modified sources is granted, provided you

1. distribute the corresponding source modifications from the
released version in the form of a patch file along with the binaries,
2. add special version identification to distinguish your version
in addition to the base release version number,
3. provide your name and address as the primary contact for the
support of your modified version, and
4. retain our contact information in regard to use of the base
software.

Permission to distribute the released version of the source code along with corresponding source modifi-
cations in the form of a patch file is granted with same provisions 2 through 4 for binary distributions.

This software is provided "as is" without express or implied warranty to the extent permitted by appli-
cable law.

AUTHORS

Original Software:
Thomas Williams, Colin Kelley.

Gnuplot 2.0 additioms:
Russell Lang, Dave Kotz, John Campbell.

Gnuplot 3.0 additiomns:
Gershon Elber and many others.

Gnuplot 4.0 additions:
See list of contributors at head of this document.

2 Introduction

Gnuplot is a portable command-line driven graphing utility for Linux, OS/2, MS Windows, OSX, VMS,
and many other platforms. The source code is copyrighted but freely distributed (i.e., you don’t have to
pay for it). It was originally created to allow scientists and students to visualize mathematical functions
and data interactively, but has grown to support many non-interactive uses such as web scripting. It is
also used as a plotting engine by third-party applications like Octave. Gnuplot has been supported and
under active development since 1986.

Gnuplot supports many types of plots in either 2D and 3D. It can draw using lines, points, boxes,
contours, vector fields, surfaces, and various associated text. It also supports various specialized plot

types.

2 INTRODUCTION gnuplot 4.5 17

Gnuplot supports many different types of output: interactive screen terminals (with mouse and hotkey
input), direct output to pen plotters or modern printers, and output to many file formats (eps, fig, jpeg,
LaTeX, metafont, pbm, pdf, png, postscript, svg, ...). Gnuplot is easily extensible to include new output
modes. Recent additions include interactive terminals based on aquaterm (OSX), wxWidgets (multiple
platforms), and Qt.

The command language of gnuplot is case sensitive, i.e. commands and function names written in
lowercase are not the same as those written in capitals. All command names may be abbreviated as long
as the abbreviation is not ambiguous. Any number of commands may appear on a line, separated by
semicolons (;). Strings may be set off by either single or double quotes, although there are some subtle
differences. See syntax (p. and quotes (p. for more details. Examples:

load "filename"
cd ’dir’

Many gnuplot commands have multiple options. Version 4 is less sensitive to the order of these options
than earlier versions, but some order-dependence remains. If you see error messages about unrecognized
options, please try again using the exact order listed in the documentation.

Commands may extend over several input lines by ending each line but the last with a backslash (\).
The backslash must be the last character on each line. The effect is as if the backslash and newline were
not there. That is, no white space is implied, nor is a comment terminated. Therefore, commenting out
a continued line comments out the entire command (see comments (p. [21])). But note that if an error
occurs somewhere on a multi-line command, the parser may not be able to locate precisely where the
error is and in that case will not necessarily point to the correct line.

In this document, curly braces ({}) denote optional arguments and a vertical bar (]) separates mutually
exclusive choices. Gnuplot keywords or help topics are indicated by backquotes or boldface (where
available). Angle brackets (<>) are used to mark replaceable tokens. In many cases, a default value of
the token will be taken for optional arguments if the token is omitted, but these cases are not always
denoted with braces around the angle brackets.

For built-in help on any topic, type help followed by the name of the topic or help ? to get a menu of
available topics.

The new gnuplot user should begin by reading about plotting (if in an interactive session, type help
plotting).

See the simple.dem demo, also available together with other demos on the web page
http://www.gnuplot.info/demo/

Gnuplot can be started from a command line or from an icon according to the desktop environment.
Running it from command line can take the syntax

gnuplot {OPTIONS} filel file2 ...

where filel, file2, etc. are input file as in the load command. On X11-based systems, you can use
gnuplot {X110PTIONS} {OPTIONS} filel file2 ...

see your X11 documentation or rather x11 (p. [221)) in this document.

Options interpreted by gnuplot may come anywhere on the line. Files are executed in the order specified,
as are commands supplied by the -e option, for example
gnuplot filel.in -e "reset" file2.in

The special filename "-" is used to force reading from stdin. Gnuplot exits after the last file is processed.
If no load files are named, Gnuplot takes interactive input from stdin. See help batch/interactive
(p- for more details. The options specific to gnuplot can be listed by typing

gnuplot --help

See command line options (p. for more details.

Hit ’h’ for help about hotkeys and mousing features in interactive screen terminals (pm, windows,
wxt, x11).

Section seeking-assistance will help you to find further information, help and FAQ.

http://www.gnuplot.info/demo/

18 gnufxlEWLFF}ATURES INTRODUCED IN VERSION 4.5

3 Seeking-assistance

The canonical gnuplot web page can be found at
http://www.gnuplot.info

Before seeking help, please check file FAQ.pdf or the above website for
FAQ (Frequently Asked Questions) list.

If you need help as a gnuplot user, please use the newsgroup

comp.graphics.apps.gnuplot

We prefer that you read the messages through the newsgroup rather than subscribing to the mailing
list which is also available and carries the same set of messages. Instructions for subscribing to gnuplot
mailing lists may be found via the gnuplot development website on SourceForge

http://sourceforge.net/projects/gnuplot

The address for mailing to list members is:
gnuplot-info@lists.sourceforge.net

Bug reports and code contributions should be uploaded to the trackers at

http://sourceforge.net/projects/gnuplot/support

Please check previous bug reports if the bug you want to report has not been already fixed in a newer
version of gnuplot.

The list of those interested in development version of gnuplot is:

gnuplot-beta@lists.sourceforge.net

When posting a question, please include full details of the version of gnuplot, the machine, and operating
system you are using. A small script demonstrating the problem may be useful. Function plots are
preferable to datafile plots. If email-ing to gnuplot-info, please state whether or not you are subscribed
to the list, so that users who use news will know to email a reply to you. There is a form for such
postings on the website.

4 New features introduced in version 4.5

Gnuplot version 4.5 offers many new features introduced since the preceding official version 4.4. This
section lists major additions and gives a partial list of changes and minor new features. For a more
exhaustive list, see the NEWS file.

4.1 Canvas size

In earlier versions of gnuplot, some terminal types used the values from set size to control also the size
of the output canvas; others did not. The use of ’set size’ for this purpose was deprecated in version 4.2.
In version 4.4 almost all terminals now behave as follows:

set term <terminal type> size <XX>, <Y Y> controls the size of the output file, or "canvas".
Please see individual terminal documentation for allowed values of the size parameters. By default, the
plot will fill this canvas.

set size <XX>, <YY> scales the plot itself relative to the size of the canvas. Scale values less than
1 will cause the plot to not fill the entire canvas. Scale values larger than 1 will cause only a portion of
the plot to fit on the canvas. Please be aware that setting scale values larger than 1 may cause problems
on some terminal types.

The major exception to this convention is the PostScript driver, which by default continues to act as it
has in earlier versions. Be warned that the next version of gnuplot may change the default behaviour of
the PostScript driver as well.

Example:

http://www.gnuplot.info
http://www.gnuplot.info/faq/
http://sourceforge.net/projects/gnuplot

5 BACKWARDS COMPATIBILITY gnuplot 4.5 19

set size 0.5, 0.5

set term png size 600, 400
set output "figure.png"
plot "data" with lines

These commands will produce an output file "figure.png" that is 600 pixels wide and 400 pixels tall.
The plot will fill the lower left quarter of this canvas. This is consistent with the way multiplot mode
has always worked, however it is a change in the way the png driver worked for single plots in version
4.0.

4.2 New plot elements

The set object command can now be used to define fixed circles, ellipses, and polygons as well as
rectangles. There are two corresponding new plot styles: plot with circles and plot with ellipses.

See circle (p. [130)), ellipse (p.[130) and polygon (p.[130).

4.3 New or revised terminal drivers

Two new drivers based on the cairo and pango libraries are included, pngcairo and pdfcairo. These
are alternatives to the older libgd-based png driver and the older PDFLib-based pdf driver. The figures
in the pdf version of this manual were prepared using the pdfcairo terminal driver.

The canvas terminal driver produces javascript output that draws onto the HTML canvas element of
a web page. It can produce either a complete web page containing a single plot, or a script that can
be embedded as part of an externally generated HTML document that perhaps contains multiple plots.
The embedded plots support browser-side mousing, including zoom /unzoom.

The lua terminal driver creates an data intended to be further processed by a script in the lua program-
ming language. At this point only one such lua script, gnuplot-tikz.lua, is available. It produces a TeX
document suitable for use with the latex TikZ package. Other lua scripts could be written to process
the gnuplot output for use with other TeX packages, or with other non-TeX tools.

Set term tikz is shorthand for set term lua tikz. As decribed above, it uses the generic lua terminal
and an external lua script to produce a latex document.

4.4 New smoothing algorithms

New smoothing algorithms have been added for both 2- and 3-dimensional plots. smooth kdensity
and smooth cumul can be used with plot to draw smooth histograms and cumulative distribution
functions, resp. For use with splot several new smoothing kernels have been added to dgrid3d. See

smooth (p. dgrid3d (p. [107]).

5 Backwards compatibility

Gnuplot version 4.0 deprecated certain syntax used in earlier versions, but continued to recognize it.
This is now under the control of a configuration option, and can be disabled as follows:

./configure --disable-backwards-compatibility

Notice: Deprecated syntax items may be disabled permanently in some future version of gnuplot.

One major difference is the introduction of keywords to disambiguate complex commands, particularly
commands containing string variables. A notable issue was the use of bare numbers to specify offsets,
line and point types. Illustrative examples:

Deprecated:
set title "01ld" 0,-1
set data linespoints
plot 1 2 4 # horizontal line at y=1

20 gnuplot 4.5 7 COMMAND-LINE-EDITING

New:

TITLE = "New"

set title TITLE offset char O, char -1
set style data linespoints

plot 1 linetype 2 pointtype 4

6 Batch/Interactive Operation

Gnuplot may be executed in either batch or interactive modes, and the two may even be mixed together
on many systems.

Any command-line arguments are assumed to be either program options (first character is -) or names
of files containing gnuplot commands. The option -e "command" may be used to force execution of
a gnuplot command. Each file or command string will be executed in the order specified. The special
filename "-" is indicates that commands are to be read from stdin. Gnuplot exits after the last file is
processed. If no load files and no command strings are specified, gnuplot accepts interactive input from
stdin.

Both the exit and quit commands terminate the current command file and load the next one, until all
have been processed.

Examples:

To launch an interactive session:

gnuplot

To launch a batch session using two command files "inputl" and "input2":

gnuplot inputl input2
To launch an interactive session after an initialization file "header" and followed by another command
file "trailer":

gnuplot header - trailer

To give gnuplot commands directly in the command line, using the "-persist" option so that the plot
remains on the screen afterwards:

gnuplot -persist -e "set title ’Sine curve’; plot sin(x)"

To set user-defined variables a and s prior to executing commands from a file:

gnuplot -e "a=2; s=’file.png’" input.gpl

7 Command-line-editing

Command-line editing and command history are supported using either an external gnu readline library,
an external BSD libedit library, or a built-in equivalent. This choice is a configuration option at the
time gnuplot is built.

The editing commands of the built-in version are given below. The gnu readline and BSD libedit libraries
have their own documentation.

9 COORDINATES gnuplot 4.5 21

’ Command-line Editing Commands

Character Function
’ Line Editing
°B move back a single character.
°F move forward a single character.
“A move to the beginning of the line.
“E move to the end of the line.
“H, DEL delete the previous character.
"D delete current character. EOF if line is empty.
“K delete from current position to the end of line.
"L, "R redraw line in case it gets trashed.
~U delete the entire line.
W delete from the current word to the end of line.
] History
“P move back through history.
°N move forward through history.

8 Comments

Comments are supported as follows: a # may appear in most places in a line and gnuplot will ignore the
rest of the line. It will not have this effect inside quotes, inside numbers (including complex numbers),
inside command substitutions, etc. In short, it works anywhere it makes sense to work.

See also set datafile commentschars (p. [106)) for specifying comment characters in data files. Note
that if a comment line ends in ’\’ then the subsequent line is also treated as a comment.

9 Coordinates

The commands set arrow, set key, set label and set object allow you to draw something at an
arbitrary position on the graph. This position is specified by the syntax:

{<system>} <x>, {<system>} <y> {,{<system>} <z>}

Each <system> can either be first, second, graph, screen, or character.

first places the x, y, or z coordinate in the system defined by the left and bottom axes; second places
it in the system defined by the second axes (top and right); graph specifies the area within the axes
— 0,0 is bottom left and 1,1 is top right (for splot, 0,0,0 is bottom left of plotting area; use negative z
to get to the base — see set xyplane (p.); screen specifies the screen area (the entire area —
not just the portion selected by set size), with 0,0 at bottom left and 1,1 at top right; and character
gives the position in character widths and heights from the bottom left of the screen area (screen 0,0),
character coordinates depend on the chosen font size.

If the coordinate system for x is not specified, first is used. If the system for y is not specified, the one
used for x is adopted.

In some cases, the given coordinate is not an absolute position but a relative value (e.g., the second
position in set arrow ... rto). In most cases, the given value serves as difference to the first position.
If the given coordinate resides in a logarithmic axis the value is interpreted as factor. For example,

set logscale x
set arrow 100,5 rto 10,2

plots an arrow from position 100,5 to position 1000,7 since the x axis is logarithmic while the y axis is
linear.

If one (or more) axis is timeseries, the appropriate coordinate should be given as a quoted time string
according to the timefmt format string. See set xdata (p.[156)) and set timefmt (p.[152). Gnuplot
will also accept an integer expression, which will be interpreted as seconds from 1 January 2000.

22 gnuplot 4.5 11 ENHANCED TEXT MODE

10 Datastrings

Data files may contain string data consisting of either an arbitrary string of printable characters con-
taining no whitespace or an arbitrary string of characters, possibly including whitespace, delimited by
double quotes. The following sample line from a datafile is interpreted to contain four columns, with a
text field in column 3:

1.000 2.000 "Third column is all of this text" 4.00

Text fields can be positioned within a 2-D or 3-D plot using the commands:

plot ’datafile’ using 1:2:4 with labels
splot ’datafile using 1:2:3:4 with labels

A column of text data can also be used to label the ticmarks along one or more of the plot axes. The
example below plots a line through a series of points with (X,Y) coordinates taken from columns 3 and
4 of the input datafile. However, rather than generating regularly spaced tics along the x axis labeled
numerically, gnuplot will position a tic mark along the x axis at the X coordinate of each point and label
the tic mark with text taken from column 1 of the input datafile.

set xtics
plot ’datafile’ using 3:4:xticlabels(l) with linespoints

There is also an option that will interpret the first entry in a column of input data (i.e. the column
heading) as a text field, and use it as the key title for data plotted from that column. The example
given below will use the first entry in column 2 to generate a title in the key box, while processing the
remainder of columns 2 and 4 to draw the required line:

plot ’datafile’ using 1:(£($2)/$4) with lines title columnhead(2)

See set style labels (p. , using xticlabels (p. , plot title (p. , using (p. .

11 Enhanced text mode

Many terminal types support an enhanced text mode in which additional formatting information is
embedded in the text string. For example, "x~2" will write x-squared as we are used to seeing it, with a
superscript 2. This mode is normally selected when you set the terminal, e.g. "set term png enhanced",
but may also be toggled afterward using "set termoption enhanced", or by marking individual strings
as in "set label 'x_2’ noenhanced".

Enhanced Text Control Codes
Control Example Result Explanation
- a"x a® superscript
_ a_x Qg subscript
Q a@b_{cd} al, phantom box (occupies no width)
& d&{space}b dyuuuub inserts space of specified length
- ~a{.8-} a overprints -’ on ’a’, raised by .8
times the current fontsize

Braces can be used to place multiple-character text where a single character is expected (e.g., 27{10}).
To change the font and/or size, use the full form: {/[fontname][=fontsize | *fontscale] text}. Thus
{/Symbol=20 G} is a 20 pt GAMMA and {/*0.75 K} is a K at three-quarters of whatever fontsize is
currently in effect. (The ’/’ character MUST be the first character after the '{’.)

The phantom box is useful for a@~b_c to align superscripts and subscripts but does not work well for
overwriting an accent on a letter. For the latter, it is much better to use an encoding (e.g. i80-8859_1 or
utf8) that contains a large variety of letters with accents or other diacritical marks. See set encoding
(p- . Since the box is non-spacing, it is sensible to put the shorter of the subscript or superscript
in the box (that is, after the @).

Space equal in length to a string can be inserted using the '&’ character. Thus

12 ENVIRONMENT gnuplot 4.5 23

>abc&{def}ghi’

would produce

’abc ghi’.

The '~ ’ character causes the next character or bracketed text to be overprinted by the following character
or bracketed text. The second text will be horizontally centered on the first. Thus ’~ a/’ will result in
an ’a’ with a slash through it. You can also shift the second text vertically by preceding the second text
with a number, which will define the fraction of the current fontsize by which the text will be raised or
lowered. In this case the number and text must be enclosed in brackets because more than one character
is necessary. If the overprinted text begins with a number, put a space between the vertical offset and
the text (*~ {abc}{.5 000}’); otherwise no space is needed (*~ {abc}{.5 — }’). You can change the font
for one or both strings (*~ a{.5 /*.2 0}’ — an ’a’ with a one-fifth-size 0’ on top — and the space between
the number and the slash is necessary), but you can’t change it after the beginning of the string. Neither
can you use any other special syntax within either string. You can, of course, use control characters by
escaping them (see below), such as '~ a{\"}’

You can access special symbols numerically by specifying \character-code (in octal), e.g., {/Symbol
\245} is the symbol for infinity. This does not work for multibyte encodings like UTF-8, however. In a
UTF-8 environment, you should be able to enter multibyte sequences implicitly by typing or otherwise
selecting the character you want.

You can escape control characters using \, e.g., \\, \{, and so on.

But be aware that strings in double-quotes are parsed differently than those enclosed in single-quotes.
The major difference is that backslashes may need to be doubled when in double-quoted strings.
Examples (these are hard to describe in words — try them!):

set xlabel ’Time (1076 {/Symbol m}s)’
set title ’{/Symbol=18 \\362@_{/=9.6 0}"{/=12 x}} \\
{/Helvetica e"{-{/Symbol m}~2/2} d}{/Symbol m}’

The file "ps_guide.ps" in the /docs/psdoc subdirectory of the gnuplot source distribution contains more
examples of the enhanced syntax.

12 Environment

A number of shell environment variables are understood by gnuplot. None of these are required, but
may be useful.

If GNUTERM is defined, it is used as the name of the terminal type to be used. This overrides any
terminal type sensed by gnuplot on start-up, but is itself overridden by the .gnuplot (or equivalent)
start-up file (see startup (p.) and, of course, by later explicit changes.

GNUHELP may be defined to be the pathname of the HELP file (gnuplot.gih).

On VMS, the logical name GNUPLOT$HELP should be defined as the name of the help library for
gnuplot. The gnuplot help can be put inside any system help library, allowing access to help from
both within and outside gnuplot if desired.

On Unix, HOME is used as the name of a directory to search for a .gnuplot file if none is found in the
current directory. On MS-DOS, Windows and OS/2, GNUPLOT is used. On Windows, the NT-specific
variable USERPROFILE is also tried. VMS, SYS$LOGIN: is used. Type help startup.

On Unix, PAGER is used as an output filter for help messages.

On Unix, SHELL is used for the shell command. On MS-DOS and OS/2, COMSPEC is used for the
shell command.

FIT_SCRIPT may be used to specify a gnuplot command to be executed when a fit is interrupted —
see fit (p. . FIT_LOG specifies the default filename of the logfile maintained by fit.

GNUPLOT_LIB may be used to define additional search directories for data and command files. The
variable may contain a single directory name, or a list of directories separated by a platform-specific path

24 gnuplot 4.5 13 EXPRESSIONS

separator, eg. > on Unix, or ’;” on DOS/Windows/OS/2 platforms. The contents of GNUPLOT_LIB
are appended to the loadpath variable, but not saved with the save and save set commands.

Several gnuplot terminal drivers access TrueType fonts via the gd library. For these drivers the font
search path is controlled by the environmental variable GDFONTPATH. Furthermore, a default font for
these drivers may be set via the environmental variable GNUPLOT_DEFAULT_GDFONT.

The postscript terminal uses its own font search path. It is controlled by the environmental vari-
able GNUPLOT_FONTPATH. The format is the same as for GNUPLOT_LIB. The contents of GNU-
PLOT_FONTPATH are appended to the fontpath variable, but not saved with the save and save set
commands.

GNUPLOT_PS_DIR is used by the postscript driver to search for external prologue files. Depending on
the build process, gnuplot contains either a built-in copy of those files or a default hardcoded path. You
can use this variable have the postscript terminal use custom prologue files rather than the default files.

See postscript prologue (p. [208)).

13 Expressions

In general, any mathematical expression accepted by C, FORTRAN, Pascal, or BASIC is valid. The
precedence of these operators is determined by the specifications of the C programming language. White
space (spaces and tabs) is ignored inside expressions.

Complex constants are expressed as {<real>,<imag>}, where <real> and <imag> must be numerical
constants. For example, {3,2} represents 3 + 2i; {0,1} represents i’ itself. The curly braces are explicitly
required here.

Note that gnuplot uses both "real" and "integer" arithmetic, like FORTRAN and C. Integers are entered
as "1" "-10", etc; reals as "1.0", "-10.0", "lel", 3.5e-1, etc. The most important difference between
the two forms is in division: division of integers truncates: 5/2 = 2; division of reals does not: 5.0/2.0 =
2.5. In mixed expressions, integers are "promoted" to reals before evaluation: 5/2e0 = 2.5. The result
of division of a negative integer by a positive one may vary among compilers. Try a test like "print -5/2"
to determine if your system chooses -2 or -3 as the answer.

The integer expression "1/0" may be used to generate an "undefined" flag, which causes a point to
ignored; the ternary operator gives an example. Or you can use the pre-defined variable NaN to
achieve the same result.

The real and imaginary parts of complex expressions are always real, whatever the form in which they
are entered: in {3,2} the "3" and "2" are reals, not integers.

Gnuplot can also perform simple operations on strings and string variables. For example, the expression
("A" . "B" eq "AB") evaluates as true, illustrating the string concatenation operator and the string
equality operator.

A string which contains a numerical value is promoted to the corresponding integer or real value if used
in a numerical expression. Thus ("3" + "4" == 7) and (6.78 == "6.78") both evaluate to true. An
integer, but not a real or complex value, is promoted to a string if used in string concatenation. A
typical case is the use of integers to construct file names or other strings; e.g. ("file" . 4 eq "filed") is
true.

Substrings can be specified using a postfixed range descriptor [beg:end]. For example, "ABCDEF"[3:4]
== "CD" and "ABCDEF"[4:*] == "DEF" The syntax "string" [beg:end] is exactly equivalent to calling
the built-in string-valued function substr("string",beg,end), except that you cannot omit either beg or
end from the function call.

13.1 Functions

The functions in gnuplot are the same as the corresponding functions in the Unix math library, except
that all functions accept integer, real, and complex arguments, unless otherwise noted.

For those functions that accept or return angles that may be given in either degrees or radians (sin(x),

13 EXPRESSIONS enuplot 4.5 25

cos(x), tan(x), asin(x), acos(x), atan(x), atan2(x) and arg(z)), the unit may be selected by set angles,
which defaults to radians.

] Math library functions

Function Arguments Returns
abs(x) any absolute value of z, |z|; same type
abs(x) complex length of z, \/real(r)? + imag(z)2
acos(x) any cos™!x (inverse cosine)
acosh(x) any cosh™ z (inverse hyperbolic cosine) in radians
airy(x) any Airy function Ai(x)
arg(x) complex the phase of x
asin(x) any sin™! z (inverse sin)
asinh(x) any sinh ™ z (inverse hyperbolic sin) in radians
atan(x) any tan~! z (inverse tangent)
atan2(y,x) int or real tan~!(y/x) (inverse tangent)
atanh(x) any tanh™' z (inverse hyperbolic tangent) in radians
EllipticK (k) real k € (-1:1) K (k) complete elliptic integral of the first kind
EllipticE(k) real k € [-1:1] E(k) complete elliptic integral of the second kind
EllipticPi(n,k) real n<1, real k € (-1:1) II(n, k) complete elliptic integral of the third kind
besj0(x) int or real jo Bessel function of z, in radians
besj1(x) int or real j1 Bessel function of z, in radians
besy0(x) int or real 1o Bessel function of z, in radians
besy1(x) int or real y1 Bessel function of z, in radians
ceil(x any [2], smallest integer not less than x (real part)
cos(x) any cosx, cosine of x
cosh(x) any cosh z, hyperbolic cosine of z in radians
erf(x) any erf(real(x)), error function of real(x)
erfe(x) any erfc(real(z)), 1.0 - error function of real(z)
exp(x) any e®, exponential function of x
expint(n,x) int n >0, real z >0 E,(z) = [[°t~"e "' dt, exponential integral of x
floor(x) any | x|, largest integer not greater than z (real part)
gamma(x) any gamma(real(z)), gamma function of real(x)
ibeta(p,q,x) any ibeta(real(p, ¢, z)), ibeta function of real(p,q,z)
inverf(x) any inverse error function of real(x)
igamma(a,x) any igamma(real(a, x)), igamma function of real(a,z)
imag(x) complex imaginary part of x as a real number
invnorm(x) any inverse normal distribution function of real(z)
int(x) real integer part of z, truncated toward zero
lambertw(x) real Lambert W function
lgamma(x) any lgamma(real(x)), lgamma function of real(x)
log(x) any log, x, natural logarithm (base e) of x
log10(x) any logo x, logarithm (base 10) of
norm(x) any normal distribution (Gaussian) function of real(x)
rand(x) int pseudo random number in the interval [0:1]
real(x) any real part of =
sgn(x) any lifx>0,-1ifx <0, 0if z =0. imag(x) ignored
sin(x) any sinz, sine of x
sinh(x) any sinh x, hyperbolic sine of z in radians
sqri(x) any Vx, square root of =
tan(x) any tanx, tangent of x
tanh(x) any tanh x, hyperbolic tangent of = in radians
2
voigt(x,y) real Voigt /Faddeeva function £ [%dt

26 enuplot 4.5 13 EXPRESSIONS

String functions ‘

Function Arguments Returns
gprintf(” format” x,...) any string result from applying gnuplot’s format parser
sprintf(” format” x,...) multiple string result from C-language sprintf
strlen(”string”) string int length of string
strstrt (" string” ,” key”) strings int index of first character of substring ”key”
substr(”string” ,beg,end) multiple string ”string” [beg:end|
strftime(” timeformat” ,t) any string result from applying gnuplot’s time parser
strptime(” timeformat” s) string seconds since year 2000 as given in string s
system(” command”) string string containing output stream of shell command
word(”string” ,n) string, int returns the nth word in ”string”
words(”string”) string returns the number of words in ”string”

’ other gnuplot functions ‘

Function Arguments Returns
column(x) int column x during datafile manipulation.
defined(X) variable name [DEPRECATED] returns 1 if X is defined, 0 otherwise.
exists(”X”) string returns 1 if a variable named X is defined, 0 otherwise.
stringcolumn(x) int content of column x as a string.
timecolumn(x) int timecolumn z during datafile manipulation.
tm_hour(x) int the hour
tm_mday (x) int the day of the month
tm_min(x) int the minute
tm_mon(x) int the month
tm_sec(x) int the second
tm_wday(x) int the day of the week
tm_yday(x) int the day of the year
tm_year(x) int the year
time(x) any the current system time
valid(x) int test validity of column(z) during datafile manip.
value(”name”) string returns the value of the named variable.

13.1.1 Elliptic integrals

The EllipticK (k) function returns the complete elliptic integral of the first kind, i.e. the definite integral
between 0 and pi/2 of the function (1-(k*sin(p))**2)**(-0.5). The domain of k is -1 to 1 (exclusive).

The EllipticE(k) function returns the complete elliptic integral of the second kind, i.e. the definite
integral between 0 and pi/2 of the function (1-(k*sin(p))**2)**0.5. The domain of k is -1 to 1
(inclusive).

The EllipticPi(n,k) function returns the complete elliptic integral of the third kind, i.e. the definite
integral between 0 and pi/2 of the function (1-(k*sin(p))**2)**(-0.5)/(1-n*sin(p)**2). The pa-
rameter n must be less than 1, while k must lie between -1 and 1 (exclusive). Note that by definition
EllipticPi(0,k) == EllipticK (k) for all possible values of k.

13.1.2 Random number generator

The function rand() produces a sequence of pseudo-random numbers between 0 and 1 using an algorithm
from P. I’Ecuyer and S. Cote, "Implementing a random number package with splitting facilities", ACM
Transactions on Mathematical Software, 17:98-111 (1991).

rand (0) returns a pseudo random number in the interval [0:1]
generated from the current value of two internal
32-bit seeds.

rand(-1) resets both seeds to a standard value.

rand (x) for integer O < x < 2731-1 sets both internal seeds
to x.

13 EXPRESSIONS enuplot 4.5 27

rand({x,y}) for integer O < x,y < 2731-1 sets seedl to x and
seed2 to y.

13.1.3 Value

B = value("A") is effectively the same as B = A, where A is the name of a user-defined variable. This
is useful when the name of the variable is itself held in a string variable. See user-defined variables
(p- . It also allows you to read the name of a variable from a data file. If the argument is a
numerical expression, value() returns the value of that expression. If the argument is a string that does
not correspond to a currently defined variable, value() returns NaN.

13.2 Operators

The operators in gnuplot are the same as the corresponding operators in the C programming language,
except that all operators accept integer, real, and complex arguments, unless otherwise noted. The **
operator (exponentiation) is supported, as in FORTRAN.

Parentheses may be used to change order of evaluation.

13.2.1 Unary

The following is a list of all the unary operators and their usages:

’ Unary Operators

Symbol Example Explanation
- -a unary minus
+a unary plus (no-operation)
- “a * one’s complement
! la * logical negation
! al * factorial
$ $3 * call arg/column during ‘using’ manipulation

(*) Starred explanations indicate that the operator requires an integer argument.

Operator precedence is the same as in Fortran and C. As in those languages, parentheses may be used
to change the order of operation. Thus -2**2 = -4, but (-2)**2 = 4.

The factorial operator returns a real number to allow a greater range.

13.2.2 Binary

The following is a list of all the binary operators and their usages:

28 enuplot 4.5 13 EXPRESSIONS

’ Binary Operators

Symbol Example Explanation
*% a**b exponentiation
* axb multiplication
/ a/b division
% a%b * modulo
+ a+b addition
- a-b subtraction
== a== equality
1= al=b inequality
< a<b less than
<= a<=b less than or equal to
> a>b greater than
>= a>=b greater than or equal to
a&b * bitwise AND
- a"b * bitwise exclusive OR
| alb * bitwise inclusive OR
&& ak&b * logical AND
|l allb * logical OR
= a=>o assignment
s (a,b) serial evaluation
A.B string concatenation
eq A eq B string equality
ne A ne B string inequality

(*) Starred explanations indicate that the operator requires integer arguments. Capital letters A and B
indicate that the operator requires string arguments.

Logical AND (&&) and OR (]|) short-circuit the way they do in C. That is, the second && operand is
not evaluated if the first is false; the second || operand is not evaluated if the first is true.

Serial evaluation occurs only in parentheses and is guaranteed to proceed in left to right order. The
value of the rightmost subexpression is returned.

13.2.3 Ternary

There is a single ternary operator:

’ Ternary Operator

Symbol Example Explanation
7: a’b:c ternary operation

The ternary operator behaves as it does in C. The first argument (a), which must be an integer, is
evaluated. If it is true (non-zero), the second argument (b) is evaluated and returned; otherwise the
third argument (c) is evaluated and returned.

The ternary operator is very useful both in constructing piecewise functions and in plotting points only
when certain conditions are met.

Examples:

Plot a function that is to equal sin(x) for 0 <= x < 1, 1/x for 1 <= x < 2, and undefined elsewhere:

f(x) = 0<=x && x<1 7 sin(x) : 1<=x && x<2 7 1/x : 1/0
plot £(x)

Note that gnuplot quietly ignores undefined values, so the final branch of the function (1/0) will produce
no plottable points. Note also that f(x) will be plotted as a continuous function across the discontinuity
if a line style is used. To plot it discontinuously, create separate functions for the two pieces. (Parametric
functions are also useful for this purpose.)

13 EXPRESSIONS gnuplot 4.5 29

For data in a file, plot the average of the data in columns 2 and 3 against the datum in column 1, but
only if the datum in column 4 is non-negative:

plot ’file’ using 1:($4<0 7 1/0 : ($2+$3)/2)

For an explanation of the using syntax, please see plot datafile using (p. .

13.3 Gnuplot-defined variables

Gnuplot maintains a number of read-only variables that reflect the current internal state of the program
and the most recent plot. These variables begin with the prefix "GPVAL_". Examples include GP-
VAL_TERM, GPVAL_X_MIN, GPVAL_X_MAX, GPVAL_Y_MIN. Type show variables all to display
the complete list and current values. Values related to axes parameters (ranges, log base) are values
used during the last plot, not those currently set.

The read-only variable GPVAL_ERRNO is set to a non-zero value if any gnuplot command terminates
early due to an error. The most recent error message is stored in the string variable GPVAL_ERRMSG.
Both GPVAL_ERRNO and GPVAL_ERRMSG can be cleared using the command reset errors.

Interactive terminals with mouse functionality maintain read-only variables with the prefix "MOUSE_".
See mouse variables (p. for details.

The fit mechanism uses several variables with names that begin "FIT_". It is safest to avoid using such
names. "FIT_LIMIT", however, is one that you may wish to redefine. Under set fit errorvariables,
the error for each fitted parameter will be stored in a variable named like the parameter, but with "_err"
appended. See the documentation on fit (p. for details.

See user-defined variables (p. , reset errors (p. , mouse variables (p. , and fit (p. .

13.4 User-defined variables and functions

New user-defined variables and functions of one through twelve variables may be declared and used
anywhere, including on the plot command itself.

User-defined function syntax:

<func-name>(<dummyl1> {,<dummy2>} ... {,<dummy12>}) = <expression>

where <expression> is defined in terms of <dummy1> through <dummy12>.
User-defined variable syntax:

<variable-name> = <constant-expression>

Examples:
w =2
q = floor(tan(pi/2 - 0.1))

f(x) = sin(w*x)

sinc(x) = sin(pi*x)/(pi*x)

delta(t) = (t == 0)

ramp(t) = (t >0) 27t : 0

min(a,b) = (a<b) ?7a: b

comb(n,k) = n!/(k!'*(n-k)!)

len3d(x,y,2z) = sqrt(xxx+y*y+z*z)

plot f(x) = sin(x*a), a = 0.2, f(x), a = 0.4, £(x)

file = "mydata.inp"
file(n) = sprintf("run_%d.dat",n)

The final two examples illustrate a user-defined string variable and a user-defined string function.

Note that the variables pi (3.14159...) and NaN (IEEE "Not a Number") are already defined. You can
redefine these to something else if you really need to. The original values can be recovered by setting:

30 enuplot 4.5 14 FONTS

GPVAL_NaN
GPVAL_pi

NaN
pi

Other variables may be defined under various gnuplot operations like mousing in interactive terminals
or fitting; see gnuplot-defined variables (p. for details.

You can check for existence of a given variable V by the exists("V") expression. For example

a =10
if (exists("a")) print "a is defined"
if (lexists("b")) print "b is not defined"

Valid names are the same as in most programming languages: they must begin with a letter, but
subsequent characters may be letters, digits, or "_".

Each function definition is made available as a special string-valued variable with the prefix 'GPFUN_".
Example:
set label GPFUN_sinc at graph .05,.95

See show functions (p. , functions (p. , gnuplot-defined variables (p. [29)), macros
(p- , value (p. .

14 Fonts

Gnuplot does not provide any fonts of its own. It relies on external font handling, the details of which
unfortunately vary from one terminal type to another. Brief documentation of font mechanisms that
apply to more than one terminal type is given here. For information on font use by other individual
terminals, see the documentation for that terminal.

14.1 Cairo (pdfcairo, pngcairo, wxt terminals)

Sorry, this section is under construction. These terminals find and access fonts using the external
fontconfig tool set. Please see the

fontconfig user manual.

It is usually sufficient in gnuplot to request a font by a generic name and size, letting fontconfig substitute
a similar font if necessary. The following will probably all work:

set term pdfcairo font "sans,12"
set term pdfcairo font "Times, 12"
set term pdfcairo font "Times-New-Roman,12"

14.2 Gd (png, gif, jpeg terminals)

Font handling for the png, gif, and jpeg terminals is done by the external library libgd. Five basic fonts
are provided directly by libgd. These are tiny (5x8 pixels), small (6x12 pixels), medium, (7x13 Bold),
large (8x16) or giant (9x15 pixels). These fonts cannot be scaled or rotated. Use one of these keywords
instead of the font keyword. E.g.

set term png tiny

On most systems libgd also provides access to Adobe Type 1 fonts (*.pfa) and TrueType fonts (*.ttf).
You must give the name of the font file, not the name of the font inside it, in the form "<face>
{,<pointsize>}". <face> is either the full pathname to the font file, or the first part of a filename in one of
the directories listed in the GDFONTPATH environmental variable. That is, ’set term png font "Face"’
will look for a font file named either <somedirectory>/Face.ttf or <somedirectory>/Face.pfa. For
example, if GDFONTPATH contains /usr/local/fonts/ttf:/usr/local/fonts/pfa then the following
pairs of commands are equivalent

http://fontconfig.org/fontconfig-user.html

15 GLOSSARY gnuplot 4.5 31

set term png font "arial"

set term png font "/usr/local/fonts/ttf/arial.ttf"

set term png font "Helvetica"

set term png font "/usr/local/fonts/pfa/Helvetica.pfa"

To request a default font size at the same time:

set term png font "arial,11"

Both TrueType and Adobe Type 1 fonts are fully scalable and rotatable. If no specific font is requested in
the "set term" command, gnuplot checks the environmental variable GNUPLOT_DEFAULT_GDFONT
to see if there is a preferred default font.

14.3 Postscript (also encapsulated postscript *.eps)

PostScript font handling is done by the printer or viewing program. Gnuplot can create valid PostScript
or encapsulated PostScript (*.eps) even if no fonts at all are installed on your computer. Gnuplot simply
refers to the font by name in the output file, and assumes that the printer or viewing program will know
how to find or approximate a font by that name.

All PostScript printers or viewers should know about the standard set of Adobe fonts Times-Roman,
Helvetica, Courier, and Symbol. It is likely that many additional fonts are also available, but the
specific set depends on your system or printer configuration. Gnuplot does not know or care about this;
the output *.ps or *.eps files that it creates will simply refer to whatever font names you request.

Thus

set term postscript eps font "Times-Roman, 12"

will produce output that is suitable for all printers and viewers.
On the other hand

set term postscript eps font "Garamond-Premier-Pro-Italic"

will produce an output file that contains valid PostScript, but since it refers to a specialized font, only
some printers or viewers will be able to display the specific font that was requested. Most will substitute
a different font.

However, it is possible to embed a specific font in the output file so that all printers will be able to use
it. This requires that the a suitable font description file is available on your system. Note that some font
files require specific licensing if they are to be embedded in this way. See postscript fontfile (p.
for more detailed description and examples.

15 Glossary

Throughout this document an attempt has been made to maintain consistency of nomenclature. This
cannot be wholly successful because as gnuplot has evolved over time, certain command and keyword
names have been adopted that preclude such perfection. This section contains explanations of the way
some of these terms are used.

A "page" or "screen" or "canvas" is the entire area addressable by gnuplot. On a desktop it is a full
window; on a plotter, it is a single sheet of paper; in svga mode it is the full monitor screen.

A screen may contain one or more "plots". A plot is defined by an abscissa and an ordinate, although
these need not actually appear on it, as well as the margins and any text written therein.

A plot contains one "graph". A graph is defined by an abscissa and an ordinate, although these need
not actually appear on it.

A graph may contain one or more "lines". A line is a single function or data set. "Line" is also a plotting
style. The word will also be used in sense "a line of text". Presumably the context will remove any
ambiguity.

32 gnuplot 4.5 (16 LINETYPES, COLORS, AND STYLES

The lines on a graph may have individual names. These may be listed together with a sample of the
plotting style used to represent them in the "key", sometimes also called the "legend".

The word "title" occurs with multiple meanings in gnuplot. In this document, it will always be preceded
by the adjective "plot", "line", or "key" to differentiate among them. A 2D graph may have up to four
labelled axes. The names of the four axes are "x" for the axis along the bottom border of the plot,
"y" for the axis along the left border, "x2" for the top border, and "y2" for the right border. See axes

(p- [71).

A 3D graph may have up to three labelled axes — "x", "y" and "z". It is not possible to say where on
the graph any particular axis will fall because you can change the direction from which the graph is seen
with set view.

When discussing data files, the term "record" will be resurrected and used to denote a single line of text
in the file, that is, the characters between newline or end-of-record characters. A "point" is the datum
extracted from a single record. A "datablock" is a set of points from consecutive records, delimited by
blank records. A line, when referred to in the context of a data file, is a subset of a datablock.

16 Linetypes, colors, and styles

Each gnuplot terminal type provides a set of distinct "linetypes". These may differ in color, in thickness,
in dot/dash pattern, or in some combination of color and dot/dash. The default linetypes for a particular
terminal can be previewed by issuing the test command after setting the terminal type. The pre-defined
colors and dot/dash patterns are not guaranteed to be consistent for all terminal types, but all terminals
use the special linetype -1 to mean a solid line in the primary foreground color (normally black).

You can redefine the default linetype properties either interactively or via an initialization file. This
allows you to customize the colors and other properties of the lines used by all gnuplot plotting commands.

See set linetype (p.[122)).

By default, successive functions or datafiles plotted by a single command will be assigned successive
linetypes. You can override this default sequence by specifying a particular linetype for any function,
datafile, or plot element.

Examples:
plot "foo", "bar" # plot two files using linetypes 1, 2
plot sin(x) linetype 4 # terminal-specific linetype color 4
plot sin(x) 1t -1 # black

For many terminal types it is also possible to assign user-defined colors using explicit rgb (red, green,
blue) values, named colors, or color values that refer to the current pm3d palette.

Examples:
plot sin(x) 1t rgb "violet" # one of gnuplot’s named colors
plot sin(x) 1t rgb "#FFOOFF" # explicit RGB triple in hexadecimal
plot sin(x) 1t palette cb -45 # whatever color corresponds to -45
in the current cbrange of the palette
#

plot sin(x) 1t palette frac 0.3 fractional value along the palette

See show colornames (p. [103)), set palette (p. [136]), cbrange (p. [165]).

For terminals that support dot/dash patterns, each default linetype has both a dot-dash pattern and a
default color. Gnuplot does not currently provide a mechanism for changing the dot-dash pattern, so
if you want both a particular dash pattern and a particular color you must first choose a linetype that
has the required dash pattern, then override the default color using the keyword linecolor, abbreviated
lc. For example, the postscript terminal provides a dashed blue line as linetype 3. The plot commands
below use this same dash pattern for three plots, one in blue (the default), another in red (the default
for linetype 1), and a third in gold.

Example:
set term postscript dashed color
plot ’foo’ 1t 3, ’baz’ 1t 3 linecolor 1, ’bar’ 1t 3 1lc rgb ’gold’

16 LINETYPES, COLORS, AND STYLES|gnuplot 4.5 33

16.1 Colorspec

Many commands allow you to specify a linetype with an explicit color. Terminal-independent color
choice is only possible for terminals that support RGB color or pm3d palettes.

Syntax:

... {linecolor | 1lc} {<colorspec> | <n>}
. {textcolor | tc} {<colorspec> | {linetype | 1t} <n>}

where <colorspec> has one of the following forms:

rgbcolor "colorname"
rgbcolor "#RRGGBB"

rgbcolor variable # color is read from input file
palette frac <val> # <val> runs from O to 1

palette cb <value> # <val> lies within cbrange

palette z

variable # color index is read from input file

The "<n>" is the linetype number the color of which is used, see test (p. [L70]).

"colorname" refers to one of the color names built in to gnuplot. For a list of the available names, see
show colornames (p. [103]).

"#RRGGBB" is a hexadecimal constant preceded by the "#" symbol. The RRGGBB represents the
red, green, and blue components of the color, each on a scale from 0 - 255. For example, magenta = full-
scale red + full-scale blue would be represented by #FF00FF, which is the hexadecimal representation
of (255 << 16) + (0 << 8) + (255).

The color palette is a linear gradient of colors that smoothly maps a single numerical value onto a
particular color. Two such mappings are always in effect. palette frac maps a fractional value between
0 and 1 onto the full range of the color palette. palette cb maps the range of the color axis onto the
same palette. See set cbrange (p. . See also set colorbox (p. . You can use either of these
to select a constant color from the current palette.

"palette z" maps the z value of each plot segment or plot element into the cbrange mapping of the
palette. This allows smoothly-varying color along a 3d line or surface. It also allows coloring 2D plots
by palette values read from an extra column of data (not all 2D plot styles allow an extra column).

16.1.1 Linecolor variable

Ic variable tells the program to use the value read from one column of the input data as a linestyle
index, and use the color belonging to that linestyle. This requires a corresponding additional column in
the using specifier. Text colors can be set similarly using tc variable.

Examples:

Use the third column of data to assign colors to individual points
plot ’data’ using 1:2:3 with points lc variable

A single data file may contain multiple sets of data, separated by two
blank lines. Each data set is assigned as index value (see ‘index‘)

that can be retrieved via the ‘using‘ specifier ‘column(-2)°¢.

See ‘pseudocolumns‘. This example uses to value in column -2 to

draw each data set in a different line color.

plot ’data’ using 1:2:(column(-2)) with lines lc variable

16.1.2 Rgbcolor variable

You can assign a separate color for each data point, line segment, or label in your plot. lc rgbcolor
variable tells the program to read RGB color information for each line in the data file. This requires

34 enuplot 4.5 17 MOUSE INPUT

a corresponding additional column in the using specifier. The extra column is interpreted as a 24-bit
packed RGB triple. If the value is provided directly in the data file it is easiest to give it as a hexidecimal
value (see rgbcolor (p.) Alternatively, the using specifier can contain an expression that evaluates
to a 24-bit RGB color as in the example below. Text colors are similarly set using tc rgbcolor variable.

Example:

Place colored points in 3D at the x,y,z coordinates corresponding to
their red, green, and blue components

rgb(r,g,b) = 65536 * int(r) + 256 * int(g) + int(b)

splot "data" using 1:2:3:(rgb($1,$2,$3)) with points lc rgb variable

16.2 Linestyles vs linetypes

Lines can have additional properties such as linewidth. You can associate these various properties, as
well as equivalent properties for point symbols, into user-defined "linestyles" using the command set
style line. Once you have defined a linestyle, you can use it in a plot command to control the appearance
of one or more plot elements.

Whereas linetypes are permanent (they last until you explicitly redefine them), linestyles are tempo-
rary. They only last until the next reset of the graphics state.

Examples:

define a new line style with terminal-independent color cyan,

linewidth 3, and associated point type 6 (a circle with a dot in it).
set style line 5 1t rgb "cyan" lw 3 pt 6

plot sin(x) with linespoints 1ls 5 # user-defined line style 5

17 Mouse input

The x11, pm, windows, ggi, and wxt terminals allow interaction with the current plot using the
mouse. They also support the definition of hotkeys to activate pre-defined functions by hitting a single
key while the mouse focus is in the active plot window. It is even possible to combine mouse input with
batch command scripts, by invoking the command pause mouse and then using the mouse variables
returned by mouse clicking as parameters for subsequent scripted actions. See bind (p. and mouse
variables (p. . See also the command set mouse (p. .

17.1 Bind

Syntax:

bind {allwindows} [<key-sequence>] ["<gnuplot commands>"]
bind <key-sequence> "'
reset bind

The bind allows defining or redefining a hotkey, i.e. a sequence of gnuplot commands which will be
executed when a certain key or key sequence is pressed while the driver’s window has the input focus.
Note that bind is only available if gnuplot was compiled with mouse support and it is used by all mouse-
capable terminals. A user-specified binding supersedes any builtin bindings, except that <space> and
'q’ cannot normally be rebound. For an exception, see bind space (p. .

Mouse buttons cannot be rebound.

You get the list of all hotkeys by typing show bind or bind or by typing the hotkey 'h’ in the graph
window.

Key bindings are restored to their default state by reset bind.

Note that multikey-bindings with modifiers must be given in quotes.

17 MOUSE INPUT gnuplot 4.5 35

Normally hotkeys are only recognized when the currently active plot window has focus. bind allwin-
dows <key> ... (short form: bind all <key> ...) causes the binding for <key> to apply to all
gnuplot plot windows, active or not. In this case gnuplot variable MOUSE_KEY_WINDOW is set to the
ID of the originating window, and may be used by the bound command.

Examples:
- set bindings:
bind a "replot"
bind "ctrl-a" "plot x*x"
bind "ctrl-alt-a" ’print "great"’

bind Home "set view 60,30; replot"
bind all Home ’print "This is window " ,MOUSE_KEY_WINDOW’

- show bindings:
bind "ctrl-a" shows the binding for ctrl-a
bind shows all bindings
show bind # show all bindings

H*+

- remove bindings:

bind "ctrl-alt-a" "" # removes binding for ctrl-alt-a

(note that builtins cannot be removed)
reset bind # installs default (builtin) bindings
bind! # deprecated form of "reset bind"

- bind a key to toggle something:
v=0
bind "ctrl-r" "v=v+1l;if (v%2)set term x11 noraise; else set term x11 raise"

Modifiers (ctrl / alt) are case insensitive, keys not:
ctrl-alt-a == CtRl-alT-a
ctrl-alt-a != ctrl-alt-A

List of modifiers (alt == meta):
ctrl, alt

List of supported special keys:
"BackSpace", "Tab", "Linefeed", "Clear", "Return", "Pause", "Scroll_Lock",
"Sys_Req", "Escape", "Delete", "Home", "Left", "Up", "Right", "Down",
"PageUp", "PageDown", "End", "Begin",
"KP_Space", "KP_Tab", "KP_Enter", "KP_F1", "KP_F2", "KP_F3", "KP_F4",
"KP_Home", "KP_Left", "KP_Up", "KP_Right", "KP_Down", "KP_PageUp",
"KP_PageDown", "KP_End", "KP_Begin", "KP_Insert", "KP_Delete", "KP_Equal",
"KP_Multiply", "KP_Add", "KP_Separator", "KP_Subtract", "KP_Decimal",
"KP_Divide",

llKP_lll - llKP_gll s |IF1II —_ I|F12l|

The following are window events rather than actual keys

"Close"

See also help for mouse (p. [125)) and if (p. [68]).

17.1.1 Bind space

If gnuplot was built with configuration option —enable-raise-console, then typing <space> in the plot
window raises gnuplot’s command window. This hotkey can be changed to ctrl-space by starting gnuplot
as ’gnuplot -ctrlq’, or by setting the XResource ’gnuplot®ctrlq’. See x11 command-line-options

(p- [223).

36 enuplot 4.5 18 PLOTTING

17.2 Mouse variables

When mousing is active, clicking in the active window will set several user variables that can be
accessed from the gnuplot command line. The coordinates of the mouse at the time of the click are
stored in MOUSE_X MOUSE_.Y MOUSE_X2 and MOUSE_Y2. The mouse button clicked, and any
meta-keys active at that time, are stored in MOUSE_BUTTON MOUSE_SHIFT MOUSE_ALT and
MOUSE_CTRL. These variables are set to undefined at the start of every plot, and only become defined
in the event of a mouse click in the active plot window. To determine from a script if the mouse has
been clicked in the active plot window, it is sufficient to test for any one of these variables being defined.

plot ’something’

pause mouse

if (defined(MOUSE_BUTTON)) call ’something_else’; \
else print "No mouse click."

It is also possible to track keystrokes in the plot window using the mousing code.

plot ’something’
pause mouse keypress
print "Keystroke ", MOUSE_KEY, " at ", MOUSE_X, " ", MOUSE_Y

When pause mouse keypress is terminated by a keypress, then MOUSE_KEY will contain the ascii
character value of the key that was pressed. MOUSE_CHAR will contain the character itself as a string
variable. If the pause command is terminated abnormally (e.g. by ctrl-C or by externally closing the
plot window) then MOUSE_KEY will equal -1.

Note that after a zoom by mouse, you can read the new ranges as GPVAL_X_MIN, GPVAL_X_MAX,
GPVAL_Y_MIN, and GPVAL_Y_MAX, see gnuplot-defined variables (p. .

18 Plotting

There are three gnuplot commands which actually create a plot: plot, splot and replot. plot gen-
erates 2D plots, splot generates 3-d plots (actually 2D projections, of course), and replot appends its
arguments to the previous plot or splot and executes the modified command.

Much of the general information about plotting can be found in the discussion of plot; information
specific to 3D can be found in the splot section.

plot operates in either rectangular or polar coordinates — see set polar (p. for details of the
latter. splot operates only in rectangular coordinates, but the set mapping command allows for a few
other coordinate systems to be treated. In addition, the using option allows both plot and splot to
treat almost any coordinate system you’d care to define.

plot also lets you use each of the four borders — x (bottom), x2 (top), y (left) and y2 (right) — as an
independent axis. The axes option lets you choose which pair of axes a given function or data set is
plotted against. A full complement of set commands exists to give you complete control over the scales
and labelling of each axis. Some commands have the name of an axis built into their names, such as set
xlabel. Other commands have one or more axis names as options, such as set logscale xy. Commands
and options controlling the z axis have no effect on 2D graphs.

splot can plot surfaces and contours in addition to points and/or lines. In addition to splot, see set
isosamples (p. for information about defining the grid for a 3D function; splot datafile (p.
for information about the requisite file structure for 3D data values; and set contour (p. and set
cntrparam (p. for information about contours.

In splot, control over the scales and labels of the axes are the same as with plot, except that commands
and options controlling the x2 and y2 axes have no effect whereas of course those controlling the z axis
do take effect.

21 SUBSTITUTION AND COMMAND LII&_Eul}zﬂACZRX))B 37

19 Start-up

When gnuplot is run, it looks for an initialization file to load. This file is called .gnuplot on Unix-
like systems, and GNUPLOT.INI on other systems. If this file is not found in the current directory,
the program will look for it in the HOME directory. (under DOS, Windows and OS/2, the environ-
ment variable GNUPLOT should contain the name of this directory; on Windows NT, it will use
USERPROFILE if GNUPLOT isn’t defined). Note: if NOCWDRC is defined during the installation,
gnuplot will not read from the current directory.

If the initialization file is found, gnuplot executes the commands in it. These may be any legal gnuplot
commands, but typically they are limited to setting the terminal and defining frequently-used functions
or variables.

20 String constants and string variables

In addition to string constants, most gnuplot commands also accept a string variable, a string expression,
or a function that returns a string. For example, the following four methods of creating a plot all result
in the same plot title:

four = "4"

graph4 = "Title for plot #4"

graph(n) = sprintf("Title for plot #Jd",n)

plot ’data.4’ title "Title for plot #4"
plot ’data.4’ title graph4

plot ’data.4’ title "Title for plot #".four
plot ’data.4’ title graph(4)

Since integers are promoted to strings when operated on by the string concatenation operator, the
following method also works:

N=4

plot ’data.’.N title "Title for plot #".N

In general, elements on the command line will only be evaluated as possible string variables if they are
not otherwise recognizable as part of the normal gnuplot syntax. So the following sequence of commands
is legal, although probably should be avoided so as not to cause confusion:

plot = "my_datafile.dat"

title = "My Title"

plot plot title title

There are three binary operators that require string operands: the string concatenation operator ".",
the string equality operator "eq" and the string inequality operator "ne". The following example will
print TRUE.

if ("A"."B" eq "AB") print "TRUE"

See also the two string formatting functions gprintf (p. [111)) and sprintf (p. [26]).

Substrings can be specified by appending a range specifier to any string, string variable, or string-valued
function. The range specifier has the form [begin:end], where begin is the index of the first character of
the substring and end is the index of the last character of the substring. The first character has index
1. The begin or end fields may be empty, or contain '*’, to indicate the true start or end of the original
string. E.g. str[:] and str[*:*] both describe the full string str.

21 Substitution and Command line macros

When a command line to gnuplot is first read, i.e. before it is interpreted or executed, two forms of
lexical substitution are performed. These are triggered by the presence of text in backquotes (ascii
character 96) or preceded by @ (ascii character 64).

38 ﬂgnu&IbB&’]S[[UTION AND COMMAND LINE MACROS

21.1 Substitution of system commands in backquotes

Command-line substitution is specified by a system command enclosed in backquotes. This command
is spawned and the output it produces replaces the backquoted text on the command line. Some
implementations also support pipes; see plot datafile special-filenames (p. .

Command-line substitution can be used anywhere on the gnuplot command line, except inside strings
delimited by single quotes.

Example:
This will run the program leastsq and replace leastsq (including backquotes) on the command line
with its output:

f(x) = ‘leastsq‘

or, in VMS

f(x) = ‘run leastsq‘

These will generate labels with the current time and userid:

set label "generated on ‘date +%Y-%m-%d‘ by ‘whoami‘" at 1,1
set timestamp "generated on %Y-Y%m-%d by ‘whoami‘"

21.2 Substitution of string variables as macros

Substitution of command line macros is disabled by default, but may be enabled using the set macros
command. If macro substitution is enabled, the character @ is used to trigger substitution of the current
value of a string variable into the command line. The text in the string variable may contain any
number of lexical elements. This allows string variables to be used as command line macros. Only string
constants may be expanded using this mechanism, not string-valued expressions. For example:

set macros

stylel = "lines 1t 4 1lw 2"

style2 = "points 1t 3 pt 5 ps 2"

rangel = "using 1:3"

range2 = "using 1:5"

plot "foo" @rangel with @stylel, "bar" Q@range2 with Q@style2

The line containing @ symbols is expanded on input, so that by the time it is executed the effect is
identical to having typed in full

plot "foo" using 1:3 with lines 1t 4 1w 2, \
"bar" using 1:5 with points 1t 3 pt 5 ps 2

The function exists() may be useful in connection with macro evaluation. The following example checks
that C can safely be expanded as the name of a user-defined variable:

C = Hpin
if (exists(C)) print C," =", @C

Macro expansion does not occur inside either single or double quotes. However macro expansion does
occur inside backquotes.

Macro expansion is handled as the very first thing the interpreter does when looking at a new line of
commands and is only done once. Therefore, code like the following will execute correctly:

A = "c=1"
©A

but this line will not, since the macro is defined on the same line and will not be expanded in time

A = "c=1"; @A # will not expand to c=1

For execution of complete commands the evaluate command may also be handy.

22 SYNTAX gnuplot 4.5 39

21.3 String variables, macros, and command line substitution

The interaction of string variables, backquotes and macro substitution is somewhat complicated. Back-
quotes do not block macro substitution, so

filename = "mydata.inp"

lines = ¢ wc --lines @filename | sed "s/ .x//"

results in the number of lines in mydata.inp being stored in the integer variable lines. And double quotes
do not block backquote substitution, so

mycomputer = "‘uname -n‘"

results in the string returned by the system command uname -n being stored in the string variable
mycomputer.

However, macro substitution is not performed inside double quotes, so you cannot define a system
command as a macro and then use both macro and backquote substitution at the same time.

machine_id = "uname -n"
mycomputer = "‘Omachine_id‘" # doesn’t work!!

This fails because the double quotes prevent @machine_id from being interpreted as a macro. To store
a system command as a macro and execute it later you must instead include the backquotes as part of
the macro itself. This is accomplished by defining the macro as shown below. Notice that the sprintf
format nests all three types of quotes.

machine_id = sprintf(’"‘uname -n‘"’)
mycomputer = @machine_id

22 Syntax

Version 4 of gnuplot is much less sensitive than earlier versions to the order of keywords and suboptions.
However, if you get error messages from specifying options that you think should work, please try
rearranging them into the exact order listed by the documentation.

Options and any accompanying parameters are separated by spaces whereas lists and coordinates are
separated by commas. Ranges are separated by colons and enclosed in brackets [], text and file names
are enclosed in quotes, and a few miscellaneous things are enclosed in parentheses. Braces {} are used
for a few special purposes.

Commas are used to separate coordinates on the set commands arrow, key, and label; the list of
variables being fitted (the list after the via keyword on the fit command); lists of discrete contours or
the loop parameters which specify them on the set cntrparam command; the arguments of the set
commands dgrid3d, dummy, isosamples, offsets, origin, samples, size, time, and view; lists of
tics or the loop parameters which specify them; the offsets for titles and axis labels; parametric functions
to be used to calculate the x, y, and z coordinates on the plot, replot and splot commands; and the
complete sets of keywords specifying individual plots (data sets or functions) on the plot, replot and
splot commands.

Parentheses are used to delimit sets of explicit tics (as opposed to loop parameters) and to indicate
computations in the using filter of the fit, plot, replot and splot commands.

(Parentheses and commas are also used as usual in function notation.)
Square brackets are used to delimit ranges given in set, plot or splot commands.

Colons are used to separate extrema in range specifications (whether they are given on set, plot or
splot commands) and to separate entries in the using filter of the plot, replot, splot and fit commands.

Semicolons are used to separate commands given on a single command line.

Braces are used in text to be specially processed by some terminals, like postscript. They are also used
to denote complex numbers: {3,2} = 3 + 2i.

40 gnuplot 4.5 23 TIME/DATE DATA

At present you should not embed \n inside {} when using the PostScript terminal in enhanced text
mode.

The EEPIC, Imagen, Uniplex, LaTeX, and TPIC drivers allow a newline to be specified by \\ in a
single-quoted string or \\\\ in a double-quoted string,.

22.1 Quote Marks

Gnuplot uses three forms of quote marks for delimiting text strings, double-quote (ascii 34), single-quote
(ascii 39), and backquote (ascii 96).

Filenames may be entered with either single- or double-quotes. In this manual the command examples
generally single-quote filenames and double-quote other string tokens for clarity.

String constants and text strings used for labels, titles, or other plot elements may be enclosed in either
single quotes or double quotes. Further processing of the quoted text depends on the choice of quote
marks.

Backslash processing of special characters like \n (newline) and \345 (octal character code) is performed
for double-quoted strings. In single-quoted strings, backslashes are just ordinary characters. To get a
single-quote (ascii 39) in a single-quoted string, it has to be doubled. Thus the strings "d\" s’ b\\" and
'd" 87 b\’ are completely equivalent.

Text justification is the same for each line of a multi-line string. Thus the center-justified string

"This is the first line of text.\nThis is the second line."

will produce

This is the first line of text.
This is the second line.

but

’This is the first line of text.\nThis is the second line.’

will produce

This is the first line of text.\nThis is the second line.

Enhanced text processing is performed for both double-quoted text and single-quoted text, but only by
terminals supporting this mode. See enhanced text (p. .

Back-quotes are used to enclose system commands for substitution into the command line. See substi-

tution (p. [37).

23 Time/Date data

gnuplot supports the use of time and/or date information as input data. This feature is activated by
the commands set xdata time, set ydata time, etc.

Internally all times and dates are converted to the number of seconds from the year 2000. The command
set timefmt defines the format for all inputs: data files, ranges, tics, label positions — in short, anything
that accepts a data value must receive it in this format. Since only one input format can be in force
at a given time, all time/date quantities being input at the same time must be presented in the same
format. Thus if both x and y data in a file are time/date, they must be in the same format.

The conversion to and from seconds assumes Universal Time (which is the same as Greenwich Standard
Time). There is no provision for changing the time zone or for daylight savings. If all your data refer to
the same time zone (and are all either daylight or standard) you don’t need to worry about these things.
But if the absolute time is crucial for your application, you’ll need to convert to UT yourself.

Commands like show xrange will re-interpret the integer according to timefmt. If you change
timefmt, and then show the quantity again, it will be displayed in the new timefmt. For that matter,
if you give the deactivation command (like set xdata), the quantity will be shown in its numerical form.

24 BOXERRORBARS gnuplot 4.5 41

The commands set format or set tics format define the format that will be used for tic labels, whether
or not the specified axis is time/date.

If time/date information is to be plotted from a file, the using option must be used on the plot or
splot command. These commands simply use white space to separate columns, but white space may
be embedded within the time/date string. If you use tabs as a separator, some trial-and-error may be
necessary to discover how your system treats them.

The time function can be used to get the current system time. This value can be converted to a date
string with the strftime function, or it can be used in conjunction with timecolumn to generate relative
time/date plots. The type of the argument determines what is returned. If the argument is an integer,
time returns the current time as an integer, in seconds from 1 Jan 2000. If the argument is real (or
complex), the result is real as well. The precision of the fractional (sub-second) part depends on your
operating system. If the argument is a string, it is assumed to be a format string, and it is passed to
strftime to provide a formatted time/date string.

The following example demonstrates time/date plotting.
Suppose the file "data" contains records like

03/21/95 10:00 6.02e23

This file can be plotted by

set xdata time

set timefmt "Y%m/%d/%y"

set xrange ["03/21/95":"03/22/95"]
set format x "%m/%d"

set timefmt "Ym/%d/%y %H:%M"

plot "data" using 1:3

which will produce xtic labels that look like "03/21".
See time_specifiers (p. [112).

Part 11
Plotting styles

There are many plotting styles available in gnuplot. They are listed alphabetically below. The commands
set style data and set style function change the default plotting style for subsequent plot and splot
commands.

You also have the option to specify the plot style explicitly as part of the plot or splot command. If
you want to mix plot styles within a single plot, you must specify the plot style for each component.

Example:

plot ’data’ with boxes, sin(x) with lines

Each plot style has its own expected set of data entries in a data file. For example by default the lines
style expects either a single column of y values (with implicit x ordering) or a pair of columns with x
in the first and y in the second. For more information on how to fine-tune how columns in a file are
interpreted as plot data, see using (p. .

24 Boxerrorbars

The boxerrorbars style is only relevant to 2D data plotting. It is a combination of the boxes and
yerrorbars styles. It uses 3, 4, or 5 columns of data:

3 columns: x y ydelta

42 |gnup10t 4.5 | 25 BOXES

4 columns: x y ydelta xdelta # boxwidth != -2
4 columns: x y ylow yhigh # boxwidth == -2
5 columns: x y ylow yhigh xdelta

The boxwidth will come from the fourth column if
the y errors are given as "ydelta" and the boxwidth
was not previously set to -2.0 (set boxwidth -2.0)
or from the fifth column if the y errors are in the

form of "ylow yhigh". The special case boxwidth |

= -2.0 is for four-column data with y errors in the

form "ylow yhigh". In this case the boxwidth will rh T
be calculated so that each box touches the adjacent

- T
boxes. The width will also be calculated in cases LEHU
where three-column data are used.

wikh bamerrarbars T

An additional (4th, 5th or 6th) input column may be used to provide variable (per-datapoint) color
information (see linecolor (p.[33) and rgbcolor variable (p. [33])). The error bar will be drawn in
the same color as the border of the box.

The box height is determined from the y error in the same way as it is for the yerrorbars style — either
from y-ydelta to y+ydelta or from ylow to yhigh, depending on how many data columns are provided.
See also

errorbar demo.

25 Boxes

The boxes style is only relevant to 2D plotting. It
draws a box centered about the given x coordinate
that extends from the x axis (not from the graph
border) to the given y coordinate. It uses 2 or 3
columns of basic data. Additional input columns
may be used to provide information such as variable
line or fill color (see rgbcolor variable (p.[33))).

With boxes D

2 columns: x y
3 columns: x y x_width

The width of the box is obtained in one of three ways. If the input data has a third column, this will
be used to set the width of the box. If not, if a width has been set using the set boxwidth command,
this will be used. If neither of these is available, the width of each box will be calculated automatically
so that it touches the adjacent boxes.

The interior of the boxes is drawn according to the current fillstyle. See set style fill (p. [146]) for
details. Alternatively a new fillstyle may be specified in the plot command.

For fillstyle empty the box is not filled.

For fillstyle solid the box is filled with a solid rectangle of the current drawing color. There is an
optional parameter <density> that controls the fill density; it runs from 0 (background color) to 1
(current drawing color).

For fillstyle pattern the box is filled in the current drawing color with a pattern, if supported by the
terminal driver.

Examples:
To plot a data file with solid filled boxes with a small vertical space separating them (bargraph):

set boxwidth 0.9 relative
set style fill solid 1.0
plot ’file.dat’ with boxes

http://www.gnuplot.info/demo/mgr.html

27 BOXXYERRORBARS gnuplot 4.5 43

To plot a sine and a cosine curve in pattern-filled boxes style:

set style fill pattern
plot sin(x) with boxes, cos(x) with boxes

The sin plot will use pattern 0; the cos plot will use pattern 1. Any additional plots would cycle through
the patterns supported by the terminal driver.

To specify explicit fillstyles for each dataset:

plot ’filel’ with boxes fs solid 0.25, \
’file2’ with boxes fs solid 0.50, \
’file3’ with boxes fs solid 0.75, \
’file4’ with boxes fill pattern 1, \
’fileb’ with boxes fill empty

26 Boxplot

Boxplots are a common way to represent a statisti- e b

cal distribution of values. Quartile boundaries are s | .
determined such that 1/4 of the points have a value 120 L

equal or less than the first quartile boundary, 1/2 of o0 |-

the points have a value equal or less than the second su L . .
quartile (median) value, etc. A box is drawn around &0 - - .
the region between the first and third quartiles, with an :
a horizontal line at the median value. Whiskers ex- a0 [% %
tend from the box to user-specified limits. Points -

that lie outside these limits are drawn individually. i .

Examples

Place a boxplot at x coordinate 1.0 representing the y values in column 5
plot ’data’ using (1.0):5

Same plot but suppress outliers and force the width of the boxplot to 0.3
set style boxplot nooutliers
plot ’data’ using (1.0):5:(0.3)

The default width of the box can be set via set boxwidth <width> or may be specified as an optional
3rd column in the using clause of the plot command. The first and third columns (x coordinate and
width) are normally provided as constants rather than as data columns.

By default the whiskers extend from the ends of the box to the most distant point whose y value lies
within 1.5 times the interquartile range. By default outliers are drawn as circles (point type 7). The
width of the bars at the end of the whiskers may be controlled using set bars.

These default properties may be changed using the set style boxplot command. See set style boxplot

(p- [145)), bars (p. [98)), boxwidth (p.[99), fillstyle (p.[146)), candlesticks (p. [44).

27 Boxxyerrorbars

44 gnuplot 4.5 28 CANDLESTICKS

The boxxyerrorbars style is only relevant to 2D
data plotting. It is similar to the xyerrorbars style with beperrertary
except that it draws rectangular areas rather than

simple crosses. It uses either 4 or 6 basic columns of

input data. Additional input columns may be used |:|

to provide information such as variable line or fill H D

IO
color (see rgbcolor variable (p.) DD |:| . []

4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh

The box width and height are determined from the x and y errors in the same way as they are for the
xyerrorbars style — either from xlow to xhigh and from ylow to yhigh, or from x-xdelta to x+xdelta
and from y-ydelta to y+ydelta, depending on how many data columns are provided.

An additional (5th or 7th) input column may be used to provide variable (per-datapoint) color informa-
tion (see linecolor (p. and rgbcolor variable (p. [33)).

The interior of the boxes is drawn according to the current fillstyle. See set style fill (p. [146]) and
boxes (p. for details. Alternatively a new fillstyle may be specified in the plot command.

28 Candlesticks

The candlesticks style can be used for 2D data
plotting of financial data or for generating box-and-
whisker plots of statistical data. The symbol is a
rectangular box, centered horizontally at the x co-
ordinate and limited vertically by the opening and i] ﬁg H D ?

with candleskicks

closing prices. A vertical line segment at the x co-
ordinate extends up from the top of the rectangle to @
the high price and another down to the low. The ﬁg
vertical line will be unchanged if the low and high

prices are interchanged.

Five columns of basic data are required:

financial data: date open low high close
whisker plot: x box_min whisker_min whisker_high box_high

The width of the rectangle can be controlled by the set boxwidth command. For backwards compat-
ibility with earlier gnuplot versions, when the boxwidth parameter has not been set then the width of
the candlestick rectangle is controlled by set bars <width>.

Alternatively, an explicit width for each box-and-whiskers grouping may be specified in an optional 6th
column of data. The width must be given in the same units as the x coordinate.

An additional (6th, or 7th if the 6th column is used for width data) input column may be used to provide
variable (per-datapoint) color information (see linecolor (p. and rgbcolor variable (p. [33)).

By default the vertical line segments have no crossbars at the top and bottom. If you want crossbars,
which are typically used for box-and-whisker plots, then add the keyword whiskerbars to the plot
command. By default these whiskerbars extend the full horizontal width of the candlestick, but you can
modify this by specifying a fraction of the full width.

The usual convention for financial data is that the rectangle is empty if (open < close) and solid fill if
(close < open). This is the behavior you will get if the current fillstyle is set to "empty". See fillstyle
(p- . If you set the fillstyle to solid or pattern, then this will be used for all boxes independent of
open and close values. See also set bars (p. and financebars (p. . See also the

candlestick
and

finance

http://gnuplot.sourceforge.net/demo/candlesticks.html
http://gnuplot.sourceforge.net/demo/finance.html

30 ELLIPSES enuplot 4.5 45

demos.

Note: To place additional symbols, such as the median value, on a box-and-whisker plot requires addi-
tional plot commands as in this example:

Data columns:X Min 1stQuartile Median 3rdQuartile Max

set bars 4.0

set style fill empty

plot ’stat.dat’ using 1:3:2:6:5 with candlesticks title ’Quartiles’, \
7 using 1:4:4:4:4 with candlesticks 1t -1 notitle

Plot with crossbars on the whiskers, crossbars are 50% of full width
plot ’stat.dat’ using 1:3:2:6:5 with candlesticks whiskerbars 0.5

See set boxwidth (p.[99)), set bars (p.[98), set style fill (p. [146]), and boxplot (p. [43).

29 Circles

The circles style plots a circle with an explicit ra- ax
dius at each data point. If three columns of data are anl
present, they are interpreted as x, y, radius. The ra-
dius is always interpreted in the units of the plot’s |
horizontal axis (x or x2). The scale on y and the Loy
aspect ratio of the plot are both ignored. If only 05 |
two columns are present, the radius is taken from an b
set style circle. In this case the radius may be o |
given in graph or screen coordinates. By default a

1

full circle will be drawn. It is possible to plot arc
segments instead of full circles by specifying a start
and end angle in the 4th and 5th columns. An optional 4th or 6th column can specify per-circle color.
The start and end angles of the circle segments must be specified in degrees.

£S5 2N A5 -l 05 a0 05 A0 15

Examples:

draws circles whose area is proportional to the value in column 3
set style fill transparent solid 0.2 noborder
plot ’data’ using 1:2:(sqrt($3)) with circles, \

’data’ using 1:2 with linespoints

draws Pac-men instead of circles
plot ’data’ using 1:2:(10):(40):(320) with circles

draw a pie chart with inline data

set xrange [-15:15]

set style fill transparent solid 0.9 noborder
plot ’-’ using 1:2:3:4:5:6 with circles lc var

0 0 5 0 30 1
0 0 5 30 70 2
0 0 5 70 120 3
0 0 5 120 230 4
0 0 5 230 360 5
e

The result is similar to using a points plot with variable size points and pointstyle 7, except that the
circles will scale with the x axis range. See also set object circle (p.[130]) and fillstyle (p.|[146)).

30 Ellipses

46 gnuplot 4.5 32 FILLEDCURVES

The ellipses style plots an ellipse at each data point.
This style is only relevant for 2D plotting. Each
ellipse is described in terms of its center, major and
minor diameters, and the angle between its major
diameter and the x axis.

wikh ¢llipses <

2 columns: x y

3 columns: x y major_diam

4 columns: x y major_diam minor_diam

5 columns: x y major_diam minor_diam angle

If only two input columns are present, they are taken as the coordinates of the centers, and the ellipses
will be drawn with the default extent (see set style ellipse (p.) The orientation of the ellipse,
which is defined as the angle between the major diameter and the plot’s x axis, is taken from the default
ellipse style (see set style ellipse (p.) If three input columns are provided, the third column
is used for both diameters. The orientation angle defaults to zero. If four columns are present, they
are interpreted as x, y, major diameter, minor diameter. Note that these are diameters, not radii. An
optional 5th column may be used to specify the orientation angle in degrees. The ellipses will also be
drawn with their default extent if either of the supplied diameters in the 3-4-5 column form is negative.

In all of the above cases, optional variable color data may be given in an additional last (3th, 4th, 5th
or 6th) column. See colorspec (p. for further information.

By default, the major diameter is interpreted in the units of the plot’s horizontal axis (x or x2) while
the minor diameter in that of the vertical (y or y2). This implies that if the x and y axis scales are not
equal, then the major/minor diameter ratio will no longer be correct after rotation. This behavior can
be changed with the units keyword, however.

There are three alternatives: if units xy is included in the plot specification, the axes will be scaled
as described above. units xx ensures that both diameters are interpreted in units of the x axis, while
units yy means that both diameters are interpreted in units of the y axis. In the latter two cases the
ellipses will have the correct aspect ratio, even if the plot is resized.

If units is omitted, the default setting will be used, which is equivalent to units xy. This can be
redefined by set style ellipse.

Example (draws ellipses, cycling through the available line types):
plot ’data’ using 1:2:3:4:(0):0 with ellipses

See also set object ellipse (p. [130]), set style ellipse (p.[149) and fillstyle (p. [146]).

31 Dots

The dots style plots a tiny dot at each point; this is
useful for scatter plots with many points. Either 1
or 2 columns of input data are required in 2D. Three
columns are required in 3D.

For some terminals (post, pdf) the size of the dot
can be controlled by changing the linewidth.

1 column y # x is row number
2 columns:
3 columns:

x5y
x y z # 3D only (splot)

32 Filledcurves

33 FINANCEBARS gnuplot 4.5 47

The filledcurves style is only relevant to 2D plot-

ting. Three variants are possible. The first two with ‘:LL:T'"”;
variants require either a function or two columns P —
of input data, and may be further modified by the a2

options listed below.

Syntax:
plot ... with filledcurves [option]

where the option can be one of the following

[closed | {above | below}
{x1 | x2 | y1 | y2 | r}[=<a>] | xy=<x>,<y>]

The first variant, closed, treats the curve itself as a closed polygon. This is the default if there are two
columns of input data.

The second variant is to fill the area between the curve and a given axis, a horizontal or vertical line, or
a point.

filledcurves closed ... Jjust filled closed curve,

filledcurves x1 ... x1 axis,

filledcurves x2 ... x2 axis, etc for yl and y2 axes,

filledcurves y1=0 ... line y=0 (at yl axis) ie parallel to x1 axis,
filledcurves y2=42 ... line y=42 (at y2 axis) ie parallel to x2, etc,
filledcurves xy=10,20 ... point 10,20 of x1,yl axes (arc-like shape).

filledcurves above r=1.5 the area of a polar plot outside radius 1.5

The third variant requires three columns of input data: the x coordinate and two y coordinates corre-
sponding to two curves sampled at the same set of x coordinates; the area between the two curves is
filled. This is the default if there are three or more columns of input data.

3 columns: x yl y2

Example of filling the area between two input curves.

fill between curves demo.
plot ’data’ using 1:2:3 with filledcurves

The above and below options apply both to commands of the form
. filledcurves above {x1|x2|ylly2|r}=<val>

and to commands of the form

. using 1:2:3 with filledcurves below
In either case the option limits the filled area to one side of the bounding line or curve.
Note: Not all terminal types support this plotting mode.

Zooming a filled curve drawn from a datafile may produce empty or incorrect areas because gnuplot is
clipping points and lines, and not areas.

If the values of <a>, <x>, <y> are out of the drawing boundary, then they are moved to the graph
boundary. Then the actually filled area in the case of option xy=<x>,<y> will depend on xrange and
yrange.

33 Financebars

The financebars style is only relevant for 2D data plotting of financial data. It requires 1 x coordinate
(usually a date) and 4 y values (prices).

5 columns: date open 1low high close

An additional (6th) input column may be used to provide variable (per-record) color information (see
linecolor (p. and rgbcolor variable (p. [33)).

http://www.gnuplot.info/demo/fillbetween.html

48 gnuplot 4.5 36 HISTOGRAMS

The symbol is a vertical line segment, located hori-
zontally at the x coordinate and limited vertically by
the high and low prices. A horizontal tic on the left
marks the opening price and one on the right marks
the closing price. The length of these tics may be j $ r J‘ {

wikth finan: sbart ———

changed by set bars. The symbol will be unchanged
if the high and low prices are interchanged. See set

bars (p. and candlesticks (p. [44]), and also j j

the

finance demo.

34 Fsteps

The fsteps style is only relevant to 2D plotting. It
connects consecutive points with two line segments:
the first from (x1,y1) to (x1,y2) and the second from
(x1,y2) to (x2,y2). The input column requires are
the same as for plot styles lines and points. The
difference between fsteps and steps is that fsteps
traces first the change in y and then the change in
x. steps traces first the change in x and then the

change in y. \—\—,—‘

See also

wikh f5keps

steps demo.

35 Histeps

The histeps style is only relevant to 2D plotting.
It is intended for plotting histograms. Y-values
are assumed to be centered at the x-values; the
point at x1 is represented as a horizontal line from
((x0+x1)/2,y1) to ((x14x2)/2,y1). The lines repre-
senting the end points are extended so that the step
is centered on at x. Adjacent points are connected
by a vertical line at their average x, that is, from
((x14x2)/2.31) to ((x1+x2)/2,y2). The input col- —
umn requires are the same as for plot styles lines
and points.

with histeps

If autoscale is in effect, it selects the xrange from the data rather than the steps, so the end points will
appear only half as wide as the others. See also

steps demo.

histeps is only a plotting style; gnuplot does not have the ability to create bins and determine their
population from some data set.

36 Histograms

The histograms style is only relevant to 2D plotting. It produces a bar chart from a sequence of parallel
data columns. Each element of the plot command must specify a single input data source (e.g. one
column of the input file), possibly with associated tic values or key titles. Four styles of histogram layout
are currently supported.

http://www.gnuplot.info/demo/finance.html
http://www.gnuplot.info/demo/steps.html
http://www.gnuplot.info/demo/steps.html

36 HISTOGRAMS gnuplot 4.5 49

set style histogram clustered {gap <gapsize>}

set style histogram errorbars {gap <gapsize>} {<linewidth>}
set style histogram rowstacked

set style histogram columnstacked

The default style corresponds to set style histogram clustered gap 2. In this style, each set of
parallel data values is collected into a group of boxes clustered at the x-axis coordinate corresponding
to their sequential position (row #) in the selected datafile columns. Thus if <n> datacolumns are
selected, the first cluster is centered about x=1, and contains <n> boxes whose heights are taken from
the first entry in the corresponding <n> data columns. This is followed by a gap and then a second
cluster of boxes centered about x=2 corresponding to the second entry in the respective data columns,
and so on. The default gap width of 2 indicates that the empty space between clusters is equivalent to
the width of 2 boxes. All boxes derived from any one column are given the same fill color and/or pattern

(see set style fill (p. [146])).

Each cluster of boxes is derived from a single row of the input data file. It is common in such input files
that the first element of each row is a label. Labels from this column may be placed along the x-axis
underneath the appropriate cluster of boxes with the xticlabels option to using.

The errorbars style is very similar to the clustered style, except that it requires additional columns
of input for each entry. The first column holds the height (y value) of that box, exactly as for the
clustered style.

2 columns: y yerr bar extends from y-yerr to y+err
3 columns: y ymin yman bar extends from ymin to ymax

The appearance of the error bars is controlled by the current value of set bars and by the optional
<linewidth> specification.

Two styles of stacked histogram are supported, chosen by the command set style histogram
{rowstacked|columnstacked}. In these styles the data values from the selected columns are col-
lected into stacks of boxes. Positive values stack upwards from y=0; negative values stack downwards.
Mixed positive and negative values will produce both an upward stack and a downward stack. The
default stacking mode is rowstacked.

The rowstacked style places a box resting on the x-axis for each data value in the first selected column;
the first data value results in a box a x=1, the second at x=2, and so on. Boxes corresponding to the
second and subsequent data columns are layered on top of these, resulting in a stack of boxes at x=1
representing the first data value from each column, a stack of boxes at x=2 representing the second data
value from each column, and so on. All boxes derived from any one column are given the same fill color
and/or pattern (see set style fill (p. [146))).

The columnstacked style is similar, except that each stack of boxes is built up from a single data
column. Each data value from the first specified column yields a box in the stack at x=1, each data
value from the second specified column yields a box in the stack at x=2, and so on. In this style the
color of each box is taken from the row number, rather than the column number, of the corresponding
data field.

Box widths may be modified using the set boxwidth command. Box fill styles may be set using the
set style fill command.

Histograms always use the x1 axis, but may use either y1 or y2. If a plot contains both histograms and
other plot styles, the non-histogram plot elements may use either the x1 or the x2 axis.

Examples:

50 |gnup10t 4.5 | 36 HISTOGRAMS

Suppose that the input file contains data values in
columns 2, 4, 6, ... and error estimates in columns 3,
5, 7, ... This example plots the values in columns 2
and 4 as a histogram of clustered boxes (the default
style). Because we use iteration in the plot com-
mand, any number of data columns can be handled
in a single command. See iteration (p. .

set boxwidth 0.9 relative

set style data histograms

set style histogram cluster

set style fill solid 1.0 border 1t -1
plot for [COL=2:4:2] ’file.dat’ using COL

S R MW R W m W R W
T
1

This will produce a plot with clusters of two boxes (vertical bars) centered at each integral value on the
x axis. If the first column of the input file contains labels, they may be placed along the x-axis using
the variant command

plot for [COL=2:4:2] ’file.dat’ using COL:xticlabels(1)

Histogram with &rror bars

If the file contains both magnitude and range infor-
mation for each value, then error bars can be added
to the plot. The following commands will add error
bars extending from (y-<error>) to (y+<error>),
capped by horizontal bar ends drawn the same width
as the box itself. The error bars and bar ends are
drawn with linewidth 2, using the border linetype
from the current fill style.

[y
=

set bars fullwidth

set style fill solid 1 border 1t -1

set style histogram errorbars gap 2 1lw 2
plot for [COL=2:4:2] ’file.dat’ using COL:COL+1

= I O T T B P
T
1

To plot the same data as a rowstacked histogram. Just to be different, this example lists the separate
columns explicitly rather than using iteration.

set style histogram rowstacked
plot ’file.dat’ using 2, ’’ using 4:xtic(1)

This will produce a plot in which each vertical bar 1w Rowstacked
corresponds to one row of data. Each vertical bar gll:::: —
contains a stack of two segments, corresponding in g - 4

height to the values found in columns 2 and 4 of the
datafile.

Finally, the commands

set style histogram columnstacked
plot ’file.dat’ using 2, ’’ using 4

37 IMAGE enuplot 4.5 51

will produce two vertical stacks, one for each column 18 _ Columnstucked

of data. The stack at x=1 will contain a box for each 1
entry in column 2 of the datafile. The stack at x=2 14
will contain a box for each parallel entry in column 4 1z
of the datafile. Because this interchanges gnuplot’s 10
usual interpretation of input rows and columns, the
specification of key titles and x-axis tic labels must
also be modified accordingly. See the comments
given below.

= MR oM

set style histogram columnstacked C